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ABSTRACT 
 
This paper describes a discrete linear model for the course-changing manoeuvres of a 
ship. A non-linear mathematical model of three degrees of freedom is used. The linear 
model has been obtained from a parametric model. The coefficients are obtained by 
means of identification. In order to validate the linear model, a comparison has been 
made of the responses of the non-linear model and the identified model for various 
course-changing manoeuvres. 
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INTRODUCTION  
 
Mathematical models of ship steering dynamics are useful for computer simulations and 
for autopilot design. The parameter values of such models are normally estimated from 
theoretical calculations or from scale model tests [1]. 

 



 
The requirements on ship steering are increasing for reasons of safety and economics. 
PDI-control algorithms have been widely used in the autopilots. These controllers 
require adjustments to compensate for various seakeeping circumstances. Fixed settings 
are therefore often used and thus the autopilot does not work in optimum conditions.  
 
In order to overcome these disadvantages and to obtain a good operating level for all 
seakeeping conditions, robust or adaptive control techniques have been used recently in 
the design of these controllers [2]. 
 
The problem with robust feedback control system design is to synthesize a control law 
which maintains system response to within prespecified tolerances despite the effects of 
uncertaity on the system. For a ship, this uncertainty can take the form of seawaves, 
winds, currents, etc. 
 
For some cases of robust controller design such as H∞ or  the system must be 
described using its transfer function. The transfer function of a ship can be obtained 
from a non-linear model of its movement, with three degrees of freedom. This is 
possible thanks to the system identification theory, which makes it possible to find a 
discrete linear model which can be used to simulate robust ship steering control 
strategies. 
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MATHEMATICAL MODEL OF THE VESSEL 
 
Six independent coordinates are required to represent the movement of a ship. Three 
coordinates are used to describe the translation movements around the axes xB, yB and 
zB (surge, sway and heave respectively), referring to a system of mobile coordinates 
situated in the ship OB. Another three coordinates describe the rotation movements (roll, 
pitch and yaw respectively) of the mobile coordinates system of the ship with respect to 
the inertial reference coordinates system situated on land O. 
 
For the Mariner ship [3] contemplated in this study, the movements of heave, roll and 
pitch can be considered null due to their low values in comparison with other 
movements. Thus the mathematical model of the ship is considered in surge, sway and 
yaw motions and the movement of the ship can be represented using Newton equations 
with three degrees of freedom, by the following equations: 
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where m is the mass of the ship and the centre of gravity is assumed to be in the position 
(xG, 0, 0) (xG is the distance at axis  xB to gc). IZZ is the inertial moment of the ship 
about zB axis, u is the linear surge and v the linear sway velocities. The angular velocity, 
yaw, is represented by r and the yaw angle is ψ measured in the inertial frame (ψ ≡ r ). 
 
The terms X and Y denote the hydrodynamic forces acting along the axes xB and yB. N 
is the hydrodynamic moment around the zB axis. These quantities take into account the 
hydrodynamic effects of the movements of the hull, the forces and moments exercised 
on the ship by the propeller and the rudder and the influence of the wind, waves and 
currents. 
 
There is a wide range of approaches to developing a set of non-linear equations for 
movement, differing basically in their expression of the hydrodynamic forces X and Y 
and the hydrodynamic moment N of eq. (2) which are functions of the ship’s movement. 
In [4] [5] the use of a third order truncated Taylor series of the X, Y and N functions at u 
= u0 and 0======= prvuprv  has been proposed in the equation 
 
 T[ X Y N ] f(u, v, r, u, v, r, ) δ=  (2) 
 
In the series development proposed, no terms higher than the third order are included 
since experience has shown that their inclusion does not significantly increase accuracy. 
In [6], a detailed presentation is made of the Mariner ship model used in this paper. As 
well as the ship’s hydrodynamics, the saturations in the rudder mechanics have also 
been included. To include the rudder action in the model, the simplified model proposed 
by [7] has been used.  
 
 
MODEL IMPLEMENTATION 
 
The non-linear model resulting from the above considerations has been implemented in 
the Matlab_Simulink environment using an S-function. A trapezoidal signal generator 
has been designed which enables the selection of rudder rotation speed, the time the 
rudder remains at a constant angle, and frequency of rudder oscillation. The signals can 
have constant parameters or random variation within a limited range of variation. The 

 



rudder angle and rudder rate limiters will typically be in the ranges: max 35ºδ = ± , and 

max2.5º sec 7º secδ≤ < respectively. 
 
 
IDENTIFICATION-VALIDATION 
 
Assuming unit sampling interval, there is one input signal u(t), t = 1…N and one output 
signal y(t), t = 1…N. Assuming the signals are related by a linear system, the 
relationship can be written 
 
 y(t) = G(q) u(t) + v(t) (3) 

 
where q is the shift operator and G(q) u(t) is short for  
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The function G(q) is called the transfer function of the system. 
 
A transfer function can be described as a rational function of q-1 (q = eiω) where the 
numerator and denominator coefficients can be specified in some way. A commonly 
used parametric model is the ARX model [8] that corresponds to  
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where B y A are polynomials in the delay operator q-1. 
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na and nb are the orders of the respective polynomials. The number nk is the number of 
delays from input to output. 

 
Henceforth, these models shall be referred to, with the notation (na, nb, nk). With the 
model description and having observed the input-output data u and y, the prediction 
errors e(t) can be computed as 
 
 e(t)=y(t)-G(q) u(t) (7) 

 



These errors are, for given data y and u, functions of G. The parametric identification 

method estimates G minimising . This is called a prediction error 

method.  
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A model structure common to all the states under study is desired. In order to select the 
model order, Akaike's final prediction error (FPE) criteria has been used and possible 
cancellations of poles and zeros have been considered.  
 
 
Identification procedure 
 
As input, three types of series of movements of the rudder have been considered: 
random variation in the opening angle with constant frequency; random variation in the 
opening angle with varying frequency; and zig-zag movement. In all cases, a duration of 
3.000 seconds has been considered to improve the reliability of the identification. A 
rudder rotation rate of 6º/sec has been chosen. 
 
For each of these signals, the corresponding output has been obtained from the non-
linear model. Input-output pairs are used to obtain the model by means of identification. 
The objective is to find a common structure for the different inputs which, if possible, is 
the one with the best adjustment in all three cases. The signals used as input are shown 
below in figures 1, 2 and 3. 
 

Figure 1.-Constant frequency signal 

 
 

 



 
Figure 2.-Variable frequency signal 

 
 

Figure 3.-20º zig-zag test 

 
 

Some of the structures identified are shown below with their corresponding errors, for 
each of the input signals in tables 1, 2 and 3. 

 



 
Table 1.-Regular signals 

STRUCTURE 
(na,nb,nk) 

FPE 

(3, 2, 0) 2.85773e007 
(4, 1, 0) 4.12372e-008 
(4, 1, 1) 4.95769e-008 
(5, 1, 0) 2.96169e-008 
(5,1, 1) 3.51791e-008 
(5, 2, 0) 2.5812e-008 

 
Table 2.-Variable signals 

STRUCTURE 
(na,nb,nk) 

FPE 

(3, 2, 0) 4.17358e-008 
(4, 1, 0) 1.36784e-008 
(4, 1, 1) 1.40648e-008 
(5, 1, 0) 1.31305e-008 
(5,1, 1) 1.34644e-008 
(5, 2, 0) 1.22748e-008 

 
Table 3.-Zig-zag signal 

STRUCTURE 
(na,nb,nk) 

FPE 

(3, 2, 0) 9.93911e-007 
(4, 1, 0) 3.02449e-007 
(4, 1, 1) 1.98271e-007 
(5, 1, 0) 1.95122e-007 
(5,1, 1) 1.41278e-007 
(5, 2, 0) 1.35848e-007 

 
It can be observed in all cases that systems with more than two zeros do not improve the 
adjustment. Similarly, the introduction of delays, while it does not change the FPE 
much, does change the trajectory. Systems with a greater number of poles are not 
considered, since these increase complexity without improving the adjustment. 
 
In the three situations contemplated, it can be observed that the structure (5, 1, 0) 
minimises the FPE. The polynomials A(q) and B(q) in this case are: 
 

A(q) = 1 - 4.08  q-1 + 6.768 q-2 - 5.724 q-3 + 2.466  q-4 - 0.4301 q-5

 

 



B(q) = 0.0001311 
 
Validation 
 
With the above discrete model and with the same input signals, the signals for the 
validation of the model are obtained as output. The figures below show the comparison 
of the output signals of the initial model with those of the identified model. 
 

Figure 4.-Regular signal adjustment. 
Dashed line: output non linear model. Solid: identified linear model 

 
 

Figure 5.-Variable signal adjustment. 
Dashed line: output non linear model. Solid: identified linear model 

 
 
 
 

Figure 6.- Zig-zag signal adjustment. 

 



Dashed line: output non linear model. Solid: identified linear model 

 
 
 
CONCLUSIONS 
 
In this paper, the transfer function of a discrete linear model of ship steering is obtained 
from a non-linear mathematical model.The mathematical model has been implemented 
in the Matlab-Simulink environment by means of an S-function. 
 
The transfer function has been obtained by means of parametric identification.This 
discrete linear model has been validated with various course-change manoeuvres, 
obtaining in all cases a good agreement with the data from the original model. 
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