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ABSTRACT 
 
This paper presents the design of a course-changing manoeuvre controller for a 
container ship. A non-linear ship model with four degrees of freedom is used to tune the 
controller. It has also been used to verify the performance of the complete system for 
different course-changing manoeuvres. Genetic algorithms have been used to solve the 
problem optimisation to the calculation of several classic controller parameters. The 
simulation of the non-linear ship model, using a second order network as the controller, 
provides a perfect monitoring of the desired trajectory with several changes in course. 
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INTRODUCTION 
 
PID controllers have been widely used in the control of ship steering. The main problem 
in using these systems is that if the mathematical model used in the design of the 
controller is not precise, or if there are external disturbances, it is extremely difficult to 



tune the controller so as to procure a good behaviour in all situations. This is why 
adaptive or robust control techniques are usually used in the design of the controller.  
 
This paper describes the design of various classical controllers for governing the course 
of a container ship using a non-linear mathematical model with four degrees of 
freedom. The model uses cross coupling movement equations of surge, sway, roll and 
yaw to take into account the effects of rolling during the changes of heading which 
these ships usually undergo due to their low metacentric height. Both for the design of 
the controller and for the simulation, a non-linear model [1] has been used, in which the 
effects of rudder saturation have also been included. 
 
The optimisation by means of genetic algorithms (GAs) [2] [3] [4] of the controller 
parameters provides completely satisfactory results for the behaviour of the simulation 
of the non-linear model of the ship for different situations of change of course. 
 
 
CONTAINER SHIP MATHEMATICAL MODEL 
 
The movement of the ship, considered as a rigid solid, has six degrees of freedom so 
that six independent coordinates are required to determine its position and orientation. 
The first three coordinates and their derivates are used to define the position and the 
translation movements on the axes xB, yB and zB, while the other three coordinates and 
their derivates are used to describe the orientation around these three axes.  
 
Figure 1. Coordinate Systems with definition of angles, velocities, forces and moments 
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For marine vehicles, the six different motion components are defined as surge, sway and 
heave for the translation movements in the three directions and roll, pitch and yaw for 



the rotation movements around the three axes (see fig.1). The origin OB of the ship’s 
coordinates system is normally situated at the intersection of the symmetry planes 
 
Table 1 shows the nomenclature used to describe the ship’s movement, forces and 
moments. This is the Standard notation recommended in [5] for use in applications of 
manoeuvre and control of ships. 
 

Table 1. Nomenclature used to describe ship’s movement 
Translation Forces Linear velocity Positio

n 
Surge X u x 
Sway Y v y 
Heave Z w z 

Rotations Moment
s 

Angular 
velocity 

Angles 

Roll K p φ 
Pitch M q θ 
Yaw N r ψ 

 
For the container ship contemplated in this study we will consider course keeping or 
course changing and roll dampening, while the pitch and heave movements can be 
ignored due to their low values in comparison with other movements. Thus, the 
mathematical model of the ship is considered in surge, sway, yaw and roll motions and 
the movement of the ship can be represented using Newton equations with four degrees 
of freedom [6], by the following equations: 
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where ∇ indicates the ship displacement, g the gravity constant, ρ the water density, IXX 
and IZZ are the inertial moments of the ship about xB and zB axes respectively, m is the 
mass of the ship and the centre of gravity is assumed to be in the position (xG, 0, zG). 
The linear surge and sway velocities are represented by u and v, the angular yaw and 
roll ones by r and p, and the corresponding yaw and roll angles are ψ and φ measured in 
the inertial frame. The righting arm function Gz(φ) can be approximated using [7]: 
 
 Gz(φ) =  (GM + ½ BM tan2φ ) sinφ   (2) 



 
where GM is the nominal ship metacentric height and BM is the distance from the 
centre of buoyancy to the metacentre. For small roll angles, equation (2) is usually 
approximated by GM sinφ  or simply GM φ. 
 
The terms X, Y, N and K denote the hydrodynamic forces acting along the axes xB and 
yB, and the hydrodynamic moments around the zB and yB axes respectively. These 
quantities take into account the hydrodynamic effects of the movements of the hull, the 
forces and moments exercised on the ship by the propeller and the rudder and the 
influence of the wind, waves and currents. 
 
In [1], a detailed presentation is made of the container-ship model used in this paper. As 
well as the ship’s hydrodynamics, the saturations in the rudder mechanics have also 
been included. This is easily achieved by limiting the maximum amplitude and velocity 
of the rudder movement [8]. The rate limit is taken as 4.6 degrees/second and the 
maximum rudder deflection is 30 degrees [6]. These limitations on the rudder 
performance contribute to the diminished controllability of the ship. 
 
Figure 2 shows the block diagram of the ship steering system. The command applied is 
ψr, which represents the desired heading and ψe is the heading error. The control signal 
of the controller which acts as a command to the steering gear is δc and represents the 
rudder angle required to correct the deviation from the heading. The actual value of the 
rudder angle is δ and ψ is the ship’s heading angle. 
 

Figure 2. Block Diagram of the ship steering system 
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THE CONTROL PROBLEM 
 
An autopilot must fulfil two objectives: course keeping and course changing. In the first 
case, the control objective is to maintain the ship's heading following the desired course 
(ψ (t) = constant). In the second case, the purpose of the control system is to alter the 
course of the ship by changing the heading angle ψ through manipulation of the rudder. 
The aim is to implement the course change without oscillations and in the shortest time 



possible. In both situations, the operability of the system must be independent of the 
disturbances produced by the wind, the waves and the currents. The course followed by 
a vessel can be specified by means of a second order reference model [9]: 
 ( ) ( ) ( )2 2

n nt 2 t t n rψ ζω ψ ω ψ ω ψ+ + =   (3) 
 
where ωn is the natural frequency and ζ ( 0,8 ≤ ζ ≤ 1) is the desired damping coefficient 
of the closed loop system. 
  
The aim of the design of this work is that the ship should make a fast course change 
following, without oscillations, the course determined by the values ζ = 0.9 and 
ωn = 0.06 rad/sec. 
 
The ship data and the hydrodynamic coefficients used in the mathematical model [1], 
correspond to a container ship from the late nineteen-seventies whose main 
characteristics are outlined in Table 2. 
 
Due to the non-linearity of the model and to the fact that its behaviour in response to a 
course change shows substantial variations, the non-linear model is used to perform an 
optimal tuning of the controller parameters using GAs. 
 

Table 2: Main data for the container ship 
Quantity Symbol Measure Unit 

Length between perpendiculars Lpp 230 m 
Beam B 32 m 
Draft D 10.7 m 
Displacement ∇ 46,000 m3

Nominal speed U0 12.7 m/s 

Rudder speed 
maxδ  4.6 deg/se

c 
Nominal XB coordinate of GC xG -0.5 m 
Nominal ZB coordinate of GC zG -3.5 m 
Nominal metacentric heigth GM 55 - 90 cm 

 
This paper uses the most widely used classical control structures: PID controllers with 
approximate derivative action in its standard and series forms, a first order controller 
and a second order controller.  
 
 



TUNING THE CONTROLLERS 
 
GAs have been used for the optimal tuning of the controllers [3]. These are based on the 
theory of evolution, according to which nature tends to favour the survival of the fittest 
members of a population to the detriment of the weakest. This optimisation method acts 
on a population of defined individuals through a chromosome formed by binary genes.  
 
The GAs act on the chromosomes using selection, crossover and mutation operators for 
a specific number of generations. In order to quantify the fitness of the individuals, an 
objective function is minimised Φ. The starting point is an initial population P(0), 
formed by p individuals. Some genetic operators are applied to this population to 
modify it probabilistically to create a new population P(1). The process is repeated over 
a given number of generations T, the successive generations, P(t) being obtained. The 
solution is obtained among individuals of the last generation P(T). The cost function 
selected was: 
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where θ  is the vector of the controller parameters, n is the total number of iterations in 
the control system simulations, ∆ψi the ith heading angle error between the desired and 
obtained heading, λ  is a scaling factor (λ= 0,05 in this case) and δi. the ith rudder angle 
deflection. The term δi has been included in order to take into account also the 
minimisation of the control effort. A simulation time of 200 sec. has been used. 
 
A population of 25 individuals over 300 generations has been used, with a probability 
of  crossover of 60% and of mutation of 10%. The genetic algorithm evaluates the cost 
function (4) in each iteration after performing the simulation of the model with the 
corresponding controller. The growth rate and mutation values affect the method's 
convergence characteristics, depending on the problem and the algorithm in question. 
The mutation is introduced in order to attempt to guarantee that any point in the search 
space can be reached and to prevent the GA from being blocked in a local optimum.  
 
Table 3 shows a summary of the results obtained with the controllers studied. The 
values indicated in the table represent for each case the cost function and the heading 
error obtained with the optimal values of the controller parameters for each course-
change manoeuvre.  
 



Table 3. Cost functions and heading errors 
Heading 

angle (deg) 
Standard 

PID 
Series 
PID 

1st. order 
controller 

2nd. order 
controller 

 Cost function (rad) 
10 1.494878 1.537111 1.180951 0.832180 
20 1.767833 1.791547 1.700806 0.925994 
30 2.155522 2.158248 2.145421 1.949617 
 Heading error (rad) 

10 1.073519 1.112889 0.819301 0.421504 
20 1.033627 1.048331 0.995293 0.296864 
30 0.912204 0.913328 0.905311 0.761659 

 
It can be appreciated that the best results are achieved with the second order controller. 
Satisfactory results are also obtained with the first order controller and with the two PID 
controllers, being the standard slightly better than series one. 
 
With the results obtained, a set of specific controllers can be implemented for each of 
the situations studied (course changes of 10, 20 and 30 degrees), whith an scheduling 
control. Moreover, the set of controllers could be extended to take in course changes of 
0 to30 degrees with a lower interval. 
 
The option presented in this paper consists in determining a single controller with which 
the best behaviour is achieved for all of the cases studied. The results are shown in 
Table 4. 
 

Table 4. Controller parameters. 
Controller Zeros Poles 

 
Gain (k) 

z1 z2 p1 p2

2nd. Order 
Controller 108.4685 - 0.05825 

+ 0.02834j
- 0.05825 
- 0.02834j - 0.6197 - 0.1137 

1st. Order 
Controller 147.411 -0.0481 0 -1.0484 0 

PIDMixto 67.6173 - 0.04934 - 0.00001 - 0.5429 0 
 
 
SIMULATIONS 
 
All of the simulations have been carried out using the SIMULINK Matlab Toolbox. 
Figure 3 shows the course-change manoeuvres of 10, 20 and 30 degrees with the 
controllers from Table 4.  
 



Figure 4 shows the heading angle errors between the desired and obtained heading 
responses. It can be observed that the second order controller obtains a good 
performance for the three course change manoeuvres studied. The first order controller 
produces also a good behaviour with errors below 2 degrees for all cases. With the PID 
controllers, the errors are greater especially for course changes of 10 degrees 
 
Figure 5 shows the results of the simulation of several course changes with the second 
order system. It can be observed that the desired course is followed accurately. 
 

Figure 3: Course-change manoeuvres: heading responses 

 
 



Figure 4: Course-change manoeuvres: heading error 

 
 

Figure 5: Course-change manoeuvres: heading and rudder responses. 

 
 
 



CONCLUSIONS 
 
In this paper, an application of the use of GA for the tuning of various classical control 
structures has been presented. The non-linear model of a container ship has been used to 
calculate the controller parameters and to verify its behaviour in the following of a 
specified trajectory with several course-changes. It has been verified that for course 
change manoeuvres, the second order controller can follow the desired path quite 
satisfactorily. By using GAs to calculate the controller parameters, values can be 
obtained which enable a good behaviour to be attained for various manoeuvring 
situations.  
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