

CONTROL ROBUSTO E INTELIG DE BUQUES DE ALTA VELOCIDAD CONTROL ROBUSTO E INTELIGENTE

DOCUMENTO Nº: CRIBAV-02-04 Fecha: 22/12/2000 Código SubProyecto: TAP97-0607-C03-02

TÍTULO DEL DOCUMENTO

ESTUDIO COMPARATIVO DE ESTRATEGIAS DE CONTROL CLASICO MULTIVARIABLE PARA LA REDUCCIÓN DEL INDICE DE MAREO EN UN BUQUE DE ALTA VELOCIDAD

Autores:

Joaquín Aranda Jesús Manuel De La Cruz Jose Manuel Díaz Pablo Ruipérez

CRIBAV

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

DOCUMENTO N°: *CRIBAV*-02-04 Fecha: 22/12/2000 Código SubProyecto: TAP97-0607-C03-02

TÍTULO DEL DOCUMENTO

ESTUDIO COMPARATIVO DE ESTRATEGIAS DE CONTROL CLASICO MULTIVARIABLE PARA LA REDUCCIÓN DEL INDICE DE MAREO EN UN BUQUE DE ALTA VELOCIDAD

Autores:

Joaquín Aranda Jesús Manuel De La Cruz Jose Manuel Díaz Pablo Ruipérez

Grupo: UNED **Responsable del Grupo:** Joaquín Aranda **Responsable del Informe:** Joaquín Aranda *SubProyecto*: TAP97-0607-C03-02 *Version*: 1

CRIBAV =

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Lista y Filiación de Autores:

Joaquín Aranda (2) Jesús Manuel De La Cruz (1) Jose Manuel Díaz (2) Pablo Ruipérez (2)

- (1) Departamento de Arquitectura de Computadores y Automática. Facultad de Ciencias Físicas. U. Complutense de Madrid
- (2) Departamento de Informática y Automática. Facultad de Ciencias. UNED

Lista de distribución:

Jesús Manuel De la Cruz García Jose María Girón Sierra Bonifacio De Andres Toro Jose Antonio López Orozco Segundo Esteban San Román Matilde Santos Peña Joaquín Aranda Almansa Pablo Ruipérez García Luis Grau Fernández José Luis Fernández Marrón José Sanchéz Moreno Francisco Jesús Velasco jmcruz@eucmax.sim.ucm.es gironsi@eucmax.sim.ucm.es deandres@eucmax.sim.ucm.es jalo@eucmax.sim.ucm.es segundo@eucmos.sim.ucm.es msantos@eucmax.sim.ucm.es jaranda@dia.uned.es pruip@dia.uned.es lgrau@dia.uned.es jlmarron@dia.uned.es jsanchez@dia.uned.es velasco@teisa.unican.es

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Agradecimientos:

Este documento se ha realizado bajo el proyecto de la CICYT: TAP97-0607.

CRIBAV =

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Resumen:

En este informe se presentan el diseño de distintos controladores clásicos sobre heave y pitch, con el objetivo de disminuir el indice de mareo (MSI) en el buque de alta velocidad TF-120. Se describe el método de sintonía utilizado para ajustar los controladores Se muestran los resultados obtenidos para las velocidades del buque de 20, 30 y 40 nudos y para los estados de la mar 4, 5 y 6.

Control Robusto e Inteligente de Buques de Alta Velocidad

CONTENIDO

1. INTRODUCCION	1
	1
2. MODELOS UTILIZADOS	I
2.1 MODELOS LINEALES DE LA DINAMICA VERTICAL DE UN BUQUE DE ALTA VELOCIDAD	1
2.2 MODELO DE LOS ACTUADORES	3
2.3 MODELO DEL PROCESO	3
2.4 MODELO DE LA RED DE DESACOPLO	4
3. ESPECIFICACIONES	5
4. DISEÑO DE LOS CONTROLADORES	5
A 1 ESOLIEMA DE CONTROL LITHIZADO	5
4.1 ESQUEMA DE CONTROL UTILIZADO	5 6
4.1.1 CONTROL RED DE 1 ORDEN	0
4.2 SINTONIA DE LOS CONTROLADORES	6
5 RESULTADOS OBTENIDOS	8
5.1 REDES DE PRIMER ORDEN	8
5.1.1 VELOCIDAD 20 NUDOS Y ESTADO DE LA MAR 4	9
5.1.2 VELOCIDAD 20 NUDOS Y ESTADO DE LA MAR 5	13
5.1.3 VELOCIDAD 20 NUDOS Y ESTADO DE LA MAR 0	1/
5.1.5 VELOCIDAD 30 NUDOS Y ESTADO DE LA MAR 4	21
5.1.6 VELOCIDAD 30 NUDOS I ESTADO DE LA MAR 5	23
5.1.7 VELOCIDAD 50 NUDOS I ESTADO DE LA MAR 0	29
5.1.8 VELOCIDAD 40 NUDOS Y ESTADO DE LA MAR 4	
5.1.9 VELOCIDAD 40 NUDOS Y ESTADO DE LA MAR 5	
5 2 REDES DE 2º ORDEN	45
5.2.1 VELOCIDAD 20 NUDOS Y ESTADO DE LA MAR 4	
5.2.2 VELOCIDAD 20 NUDOS Y ESTADO DE LA MAR 5	
5.2.3 VELOCIDAD 20 NUDOS Y ESTADO DE LA MAR 6	54
5.2.4 VELOCIDAD 30 NUDOS Y ESTADO DE LA MAR 4	59
5.2.5 VELOCIDAD 30 NUDOS Y ESTADO DE LA MAR 5	63
5.2.6 VELOCIDAD 30 NUDOS Y ESTADO DE LA MAR 6	67
5.2.7 VELOCIDAD 40 NUDOS Y ESTADO DE LA MAR 4	71
5.2.8 VELOCIDAD 40 NUDOS Y ESTADO DE LA MAR 5	75
5.2.9 VELOCIDAD 40 NUDOS Y ESTADO DE LA MAR 6	79
6. CONCLUSIONES	84
APENDICE A : MODELOS LINEALES DE LA DINAMICA VERTICAL DEL BUQUE DE ALTA VELOCIDAD TF-120	86
A.1 VELOCIDAD 20 NUDOS.	86
MODELO G _{IH}	86
MODELO G _{2H}	86
MODELO G _{IP}	86
$MODELO G_{2P}$	86
A.2 VELOCIDAD 30 NUDOS.	87
MODELO G _{1H}	87
MODELO G _{2H}	87
$MODELO G_{IP}$	87
$MODELO G_{2P}$	87

Control Robusto e Inteligente de Buques de Alta Velocidad

A.3 VELOCIDAD 40 NUDOS.	
MODELO G _{1H}	
MODELO G _{2H}	
$MODELO G_{IP}$	
$MODELO \ G_{2P}$	
APENDICE B: MODELOS DE LA RED DE DESACOPLO PARA LAS DIFER	RENTES
VELOCIDADES	
B.1 VELOCIDAD 20 NUDOS.	
<i>MODELO w</i> ₁₂	
<i>MODELO w</i> ₂₁	
B.2 VELOCIDAD 30 NUDOS.	
<i>MODELO w</i> ₁₂	
<i>MODELO w</i> ₂₁	
B.3 VELOCIDAD 40 NUDOS.	
<i>MODELO w</i> ₁₂	
<i>MODELO w</i> ₂₁	
APENDICE C: ALGORITMO GENETICO UTILIZADO	91
C.1 CARACTERISTICAS GENERALES	
C.2 FUNCIONES MATLAB IMPLEMENTADAS.	
С.2.1 А.G.М	
C.2.2 INICIALIZAR.M	
C.2.3 RANDVAL.M	
C.2.4 EVALUACION.M	
C.2.5 FCOSTE_AG.M	
C.2.6 KEEP_THE_BEST.M	
C.2.7 SELECCIONAR.M	
C.2.8 CRUCE.M	
C.2.9 XOVER.M	
C.2.10 MUTACION.M	
C.2.11 ELITISMO.M	
C.2.2 DIB_GEN.M	
APENDICE D: FUNCIONES MATLAB UTILIZADAS	98
D.1 METODO DE SINTONIA	
D.1.1 PREPARAR.M	
D.1.2 SISTEMA.M	
D.1.3 SINTONIZANDO.M	
D.1.4 FCOSTE_MC.M	
D.2 MODELOS SIMULINK	
D.3 VALIDACION DE LOS MODELOS	
D.3.1 PROPIEDADES.M	
D.3.2 RESULT.M	
D.3.3 GRAFOS.M	
D.3.4 CAL_MSI.M	
D.3.5 ASM.M	
BIBLIOGRAFIA	

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

Control Robusto e Inteligente de Buques de Alta Velocidad

CRIBAV CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

1. INTRODUCCION

Cuando se navega en un buque de alta velocidad destinado al transporte de pasajeros, se debe procurar que la seguridad y el confort tanto de los pasajeros como de la tripulación sea lo más alto posible. Uno de los inconvenientes más desagradables del transporte marítimo es sin duda el mareo que se produce en las personas como consecuencia de los distintos movimientos del barco: roll, pitch y heave.

El amortiguamiento en el movimiento de roll, es fácil de conseguir, no ocurre así con los movimientos de pitch y de heave. Por esta razón los constructores de barcos están muy interesados en conseguir controladores robustos que controlen la acción de actuadores mecánicos diseñados para el amortiguamiento de los movimientos de pitch y de heave.

Un buque es un sistema multivariable complejo que actúa en un medio que introduce una gran variedad de perturbaciones (olas, vientos, corrientes, aguas poco profundas,...,etc.). Una vez terminada la fase de modelado tanto de la dinámica vertical de un buque de alta velocidad ([2], [3] y [4]) como de los actuadores [7] que se van a colocar en el buque se está en disposición de diseñar controladores que sean capaces de gobernar las acciones de los actuadores con el propósito de disminuir las aceleraciones verticales que sufre el buque a consecuencia del oleaje.

Como complemento al trabajo realizado en [5], en este informe se presenta el diseño de un control de posición implementado con redes de primer orden y el diseño de un control de posición implementado con redes de segundo orden, para distintas velocidades y distintos estados de la mar sobre heave y pitch. Con la utilización de estos esquemas de control se ha conseguido disminuir las aceleraciones verticales y por tanto disminuir el índice de mareo.

2. MODELOS UTILIZADOS

2.1 MODELOS LINEALES DE LA DINAMICA VERTICAL DE UN BUQUE DE ALTA VELOCIDAD.

En [2] se identificaron modelos lineales continuos siso para el momento pitch, fuerza heave, movimiento de pitch y movimiento heave utilizando los datos de PRECAL [1] corregidos a proa, a las velocidades de 20, 30 y 40 nudos. Se utiliza la siguiente nomenclatura:

- $G_{1H}(s)$ es la función de transferencia que tiene como entrada la altura de olas (m) y como salida la fuerza heave (kN).
- $G_{2H}(s)$ es la función de transferencia que tiene como entrada la fuerza heave (kN) y como salida el movimiento vertical de heave (m).
- $G_{1P}(s)$ es la función de transferencia que tiene como entrada la altura de olas (m) y como salida el momento pitch (kN·m)
- G_{2P}(s) es la función de transferencia que tiene como entrada el momento pitch (kN·m) y como salida el movimiento pitch (grados)

Estos modelos están normalizados, por lo que es necesario multiplicar el filtro G_{1H} por una ganancia K_1 , y multiplicar el filtro G_{2H} por una ganancia $1/K_1$. En el caso de G_{1P} la ganancia es K_2 y para G_{2P} la ganancia es $1/K_2$. Las ganancias K_1 y K_2 se calcularon utilizando los valores máximos de fuerza heave y momento pitch que se obtuvieron en [7] para una determinada velocidad U, promediando entre las ganancias que se obtenían para los estados de la mar 4, 5 y 6. El diagrama de bloques del modelo de la dinámica vertical del buque se muestra en la Figura 2.1. En el apéndice A se muestran las expresiones de las funciones de transferencia G_{1H} , G_{2H} , G_{1P} y G_{2P} ; y de las constantes K_1 y K_2 para las distintas velocidades.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 2.1: Diagrama de bloques del modelo de la dinámica vertical del buque.

Si se define :

$$G_{1He} = K_1 \cdot G_{1H} \qquad G_{2He} = \frac{G_{2H}}{K_1} \qquad G_{1Pe} = K_2 \cdot G_{1P} \qquad G_{2Pe} = \frac{G_{2P}}{K_2}$$
(2.1)

es posible dibujar el diagrama de bloques que se muestra en la Figura 2.2 que incluye dos entradas procedentes de los actuadores, donde :

- F_A es la fuerza heave ejercida por los actuadores.
- M_A es el momento pitch ejercido por los actuadores.
- F_o es la fuerza heave ejercida por el oleaje.
- M_o es el momento pitch ejercido por el oleaje.

Figura 2.2: Diagrama de bloques del modelo de la dinámica vertical del buque incluyendo las entradas F_A y M_A procedentes de los actuadores.

Agrupando G_{1He} y G_{1Pe} dentro del bloque olas2(F&M) y agrupando G_{2He} y G_{2Pe} dentro del bloque (F&M)2mov se obtiene el diagrama de bloques que se muestra en la Figura 2.3

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 2.3: Diagrama de bloques agrupados del modelo de la dinámica vertical del buque incluyendo las entradas F_A y M_A.

2.2 MODELO DE LOS ACTUADORES

Se diseñaron dos actuadores [7] para intentar disminuir las aceleraciones verticales en el buque. Por un lado unas aletas en proa (T-Foil) y por otro lado un alerón en popa (Flap). Se obtuvo un modelo no lineal en Simulink para dichos actuadores, que permite realizar tanto control en posición como control en velocidad. También se obtuvieron modelos lineales para los actuadores, que son válidos siempre y cuando no se produzca saturación.

Básicamente el modelo de actuadores es un modelo no lineal con cuatro entradas (referencia posición o velocidad Flap , referencia posición o velocidad T-Foil, heave y pitch) y dos salidas (F_A y M_A), como se muestra en la Figura 2.4

Figura 2.4: Modelo no lineal de los actuadores

2.3 MODELO DEL PROCESO

Por modelo del proceso se entenderá el modelo de la dinámica vertical del buque Tf-120 conectado con el modelo no lineal de los actuadores. Se trata de un modelo multivariable de 2 variables manipulables (referencia en posición o en velocidad del T-Foil y referencia en posición o en velocidad del Flap), una variable de perturbación (la altura de las olas) y dos variables controladas (heave y pitch). El diagrama de bloques del modelo del proceso se muestra en la Figura 2.5 y en detalle en la Figura 2.6.

Figura 2.5: Diagrama de bloques del modelo del proceso

Control Robusto e Inteligente de Buques de Alta Velocidad

Figura 2.6: Detalle del diagrama de bloques del modelo del proceso

2.4 MODELO DE LA RED DE DESACOPLO.

De acuerdo con el estudio de la interacción entre las variables del proceso realizado en [5], se hace necesario introducir una red de desacoplo en el sistema. En la Figura 2.9 se muestra la red de desacoplo añadida al proceso.

Figura 2.7: Red de desacoplo añadida al proceso.

La red de desacoplo W que se ha utilizado, viene dada en función de las funciones de transferencia del proceso linealizado G_{11} , G_{12} , G_{21} y G_{22} .

$$W = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} = \begin{bmatrix} 1 & \frac{-G_{12}}{G_{11}} \\ \frac{-G_{21}}{G_{22}} & 1 \end{bmatrix}$$
(2.2)

Tiene dos entradas $u_1 y u_2$ para conectar los controladores y dos salidas ref_Flap y ref_Tfoil. En el apéndice B se muestran las expresiones de $w_{12} y w_{21}$ para las distintas velocidades.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

3. ESPECIFICACIONES

Se desea disminuir el índice de mareo MSI (Motion Sickness Incidence o porcentaje de personas que vomitan dentro de las dos horas) ([6] y [8]), por lo que es necesario disminuir las aceleraciones verticales que sufre el buque como consecuencia de los movimientos de pitch y de heave provocados por el oleaje al que se encuentra sometido.

Sea $acv40(t_i)$ la aceleración vertical medida a 40 metros del centro de gravedad en el instante de tiempo $t_i=0.25 \cdot (i-1)$ con i=1,...,N. Siendo N el número total de muestras

$$acv40(t_i) = a_{VH}(t_i) + a_{VP}(t_i) = \frac{d^2heave(t_i)}{dt^2} - 40 \cdot \frac{\pi}{180} \cdot \frac{d^2pitch(t_i)}{dt^2}$$
(3.1)

El valor medio acv40 de la serie temporal acv40 medida a lo largo de una carrera es :

$$J = \overline{\operatorname{acv40}} = \frac{1}{N} \sum_{i=1}^{N} \left| acv40(t_i) \right| (3.2)$$

4. DISEÑO DE LOS CONTROLADORES

4.1 ESQUEMA DE CONTROL UTILIZADO.

Se utiliza un esquema de control sobre pitch y heave como el que se muestra en la Figura 4.1:

Figura 4.1: Esquema de control utilizado.

De acuerdo con el emparejamiento entre las variables controladas y las variables manipulables deducido del análisis de interacción en [5] se han seleccionado las siguientes entradas y salidas para G_{C1} y G_{C2} :

• El regulador G_{c1} tiene como entrada el error e_1 que se define como la diferencia entre la referencia para el heave (0 m) y el valor medido del heave. La salida u_1 de G_{c1} pasa por el bloque de la red de desacoplo, que devuelve la señal u_{1d} , esta señal pasa por un bloque limitador en el rango [-7.5°, 7.5°], la salida de este bloque u_{1ds} es sumada a una señal de trimado del Flap configurada al valor de 7.5°, de tal forma que la señal ref_flap se asegura que se encuentra entre los límites físicos de la posición del Flap [0° 15°].

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

• El regulador G_{c2} tiene como entrada el error e_2 que se define como la diferencia entre la referencia para el pitch(0°) y el valor medido del pitch. La salida u₂ de G_{c2} pasa por el bloque de la red de desacoplo, que devuelve la señal u_{2d}, tras pasar por un bloque limitador en el rango [-15°, 15°] la señal ref_Tfoil se encuentra entre los límites físicos de la posición del Tfoil.

Se han probado los siguientes tipos de controladores:

- 1) Red de primer orden.
- 2) Red de segundo orden.

4.1.1 CONTROL RED DE 1^{ER} ORDEN

Se utilizan dos controladores Gc1 y Gc2 de tipo red de primer orden cuyas funciones de transferencia son de la forma :

$$G_{C1} = K_{C1} \left[\frac{s + z_{C1}}{s + p_{C1}} \right] \qquad G_{C2} = K_{C2} \left[\frac{s + z_{C2}}{s + p_{C2}} \right]$$
(4.1)

El vector de parámetros de los controladores G_{C1} y G_{C2} es :

$$\theta = [K_{C1}, z_{C1}, p_{C1}, K_{C2}, z_{C2}, p_{C2}]^{T}$$
(4.2)

4.1.2 CONTROL DE TIPO RED DE 2º ORDEN

Se utilizan dos controladores Gc1 y Gc2 de tipo red de primer orden cuyas funciones de transferencia son de la forma :

$$G_{C1} = K_{C1} \left[\frac{s^2 + A_1 s + B_1}{s^2 + C_1 s + D_1} \right] \quad G_{C2} = K_{C2} \left[\frac{s^2 + A_2 s + B_2}{s^2 + C_2 s + D_2} \right] \quad (4.3)$$

El vector de parámetros de los controladores G_{C1} y G_{C2} es :

$$\theta = [K_{C1}, A_1, B_1, C_1, D_1, K_{C2}, A_2, B_2, C_2, D_2]^T$$
(4.4)

4.2 SINTONIA DE LOS CONTROLADORES.

La sintonía de los controladores G_{C1} y G_{C2} se realiza minimizando J:

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left| acv 40(\theta, t_i) \right| \quad (4.5)$$

El problema de optimización no lineal a resolver consiste en la obtención del vector de parámetros θ_{opt} que minimice la función de coste J.

$$J(\theta_{opt}) = \min_{\theta \in S} J \tag{4.6}$$

Donde S es el rango de valores permitidos para las componentes de θ .

CRIBAV -

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

La selección del rango S para las componentes de θ se realizó tras una primera etapa de ensayos de prueba y error atendiendo a los siguientes criterios:

- Los polos de G_{c1} y de G_{c2} deben ser estables.
- Evitar una saturación excesiva de los actuadores.
- Trabajar dentro de lo posible en la zona de frecuencias de encuentro en la que el oleaje posee la energía que excita el sistema ω_e=[0.1, 10] rad/seg.

De acuerdo con los criterios anteriores estos son los rangos seleccionados, para los parámetros de los distintos tipos de controladores ensayados.

1) Red de primer orden :

$$S = \{1 \le K_{C1} \le 250 ; 0.1 \le z_{C1} \le 15; 0.1 \le p_{C1} \le 100; 1 \le K_{C2} \le 175 ; 0.1 \le z_{C2} \le 2; 0.1 \le p_{C2} \le 10\}$$
(4.7)

2) Red de segundo orden :

$$\begin{split} S = & \{ 1 \leq K_{C1} \leq 250 \ ; \ 0.2 \leq A_1 \leq 30; \ 0.01 \leq B_1 \leq 250; \ 0.2 \leq C_1 \leq 50 \ ; \ 0.01 \leq D_1 \leq 634; \\ & 1 \leq K_{C2} \leq 175 \ ; \ 0.2 \leq A_2 \leq 4; \ 0.01 \leq B_2 \leq 29; \ 0.2 \leq C_2 \leq 20 \ ; \ 0.01 \leq D_2 \leq 125 \ \} \end{split} \tag{4.8}$$

El **método de sintonía** es de tipo mixto, es decir, primero se aplica un algoritmo genético para encontrar un buen vector de parámetros inicial cercano al óptimo global y a continuación se aplica un algoritmo de optimización no lineal que conduzca al óptimo global.

El algoritmo genético resuelve problemas de maximización, no de minimización, por ello la función de coste se modifica de la siguiente forma:

$$J_G(\theta) = 5 - J \tag{4.9}$$

El máximo de J_G coincidirá con el mínimo de J.

El método de sintonía consta de los siguientes pasos :

- 1. Tras fijar el estado de la mar (SSN) y la velocidad del buque (V) nominal, se selecciona la serie temporal de altura de olas correspondiente.
- 2. Se ejecuta el algoritmo genético, que maximiza la función de coste (4.9) y devuelve el vector de parámetros solución θ_G , comprendido dentro del rango S.
- 3. Se ejecuta el algoritmo de optimización no lineal que minimiza la función de coste (4.5), tomando como condición inicial el vector de parámetros θ_G obtenido en el paso anterior.
- 4. El algoritmo termina su ejecución cuando converge al valor óptimo θ_{opt} o cuando supera el número máximo de iteraciones.

Tanto el algoritmo genético como el algoritmo de optimización no lineal requieren en cada una de sus iteraciones evaluar las funciones de coste (4.9) y (4.5), respectivamente, un determinado número de veces. Cada evaluación requiere ejecutar la simulación de un modelo Simulink. Se configuró un tiempo de simulación de 50 segundos, por ello se denotan las funciones de coste J_{G50} y J_{50} , para distinguirlas de J_G y J que utilizan todo el conjunto de puntos disponibles de serie temporal altura de olas.

En el apéndice C se explican las características del algoritmo genético utilizado. También se incluyen el código de las funciones programadas en Matlab para su implementación que están basadas en las propuestas en [9].

CRIBAV -

Control Robusto e Inteligente de Buques de Alta Velocidad

5. RESULTADOS OBTENIDOS

5.1 REDES DE PRIMER ORDEN

En la Tabla 5.1 se muestran los vectores de parámetros θ_{opt} obtenidos para las redes de primer orden tras aplicar el método de sintonía propuesto a distintas velocidades y SNN.

Tabla 5.1: Vectores de parámetros θ_{opt} obtenidos para las redes de 1^{er} orden tras aplicar el método de sintonía propuesto a distintas velocidades y SNN

	K _{C1}	Z 1	\mathbf{p}_1	K _{C2}	\mathbf{Z}_2	\mathbf{p}_2	
V=20 SSN=4	236.27	2.97	26.562	157.32	0.142	8.913	
V=20 SSN=5	195.16	9.97	77.503	172.53	0.302	9.294	
V=20 SSN=6	115.05	10.82	76.561	61.053	0.592	8.393	
V=30 SSN=4	1	2.86	99.99	160.21	0.10	4.98	
V=30 SSN=5	11.77	7.86	76.985	147.63	0.120	9.855	
V=30 SSN=6	68.55	11.12	85.39	134.14	0.136	9.861	
V=40 SSN=4	228.74	0.131	92.761	170.35	0.103	7.687	
V=40 SSN=5	5.704	6.010	67.909	82.614	0.353	9.964	
V=40 SSN=6	42.669	11.835	53.947	72.922	0.173	9.992	

En la Tabla 5.2 se muestra los porcentajes de mejora en la aceleración vertical media J y en el índice de mareo MSI obtenidos en simulación¹ utilizando las redes de primer orden sintonizadas.

 Tabla 5.2: Porcentajes de mejora en la aceleración vertical media J y en el índice de mareo MSI obtenidos en simulación utilizando las redes de primer orden sintonizadas.

	Mejora en la J	Mejora en el MSI
V=20 SSN=4	9.6 %	17.6 %
V=20 SSN=5	5.0 %	6.2 %
V=20 SSN=6	3.0 %	3.4 %
V=30 SSN=4	25.3 %	48.4 %
V=30 SSN=5	14.1 %	14.9 %
V=30 SSN=6	7.3 %	6.3 %
V=40 SSN=4	27.4 %	49.0 %
V=40 SSN=5	16.6 %	15.3 %
V=40 SSN=6	8.7 %	5.8 %

¹ La simulación se realiza sobre el total de puntos disponibles de la serie temporal de oleaje de entrada para cada par de condiciones de velocidad y estado de la mar.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

5.1.1 VELOCIDAD 20 NUDOS Y ESTADO DE LA MAR 4

En la Tabla 5.3 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J_{50} .

	Ta	bla 5.3: Resulta	dos del proceso	o de sintonía		
$\theta_{\rm G}$	235.17	2.9656	27.882	156.83	0.13187	8.6827
θ_{OPT}	236.27	2.968	26.562	157.32	0.1422	8.9126
J_{G50}	0.4994					
J_{50}	0.4992					

En la Figura 5.1 se muestra el mejor valor de la función J_{G50} de cada generación.

Figura 5.1: Mejor valor de la función J_{G50} de cada generación.

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{236.3s + 701.2}{s + 26.56} \qquad G_{C2} = \frac{157.3s + 2237}{s + 8.913}$$

En la Figura 5.2 y Figura 5.3 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.2: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.3: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.4 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CRIBAV .

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.4: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.5 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.5: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.1 se presentan los resultados del assessment

CRIBAV -

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

Control Robusto e Inteligente de Buques de Alta Velocidad

Cuadro 5.1: Resultados del assessment.

exper2e4.mat VVA Controlada 0.4993 m/s^2, WVA Sin Control 0.5466 m/s^2, Mejora 8.7 % MSI Controlado 7.9446 %, MSI Sin Control 9.5028 %, Mejora 16.4 % Fiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 0.81 °, Cavitación media en Flap 0.70 °										
exper2e5.mat WVA Controlada MSI Controlado Tiempo que el 7 Cavitación med ***********	exper2e5.mat WVA Controlada 0.7950 m/s^2, WVA Sin Control 0.8408 m/s^2, Mejora 5.5 % MSI Controlado 24.7750 %, MSI Sin Control 26.7402 %, Mejora 7.3 % Fiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg Cavitación media en T-Foil 1.99 °, Cavitación media en Flap 0.75 °									
exper3e4.mat WVA Controlada 0.4013 m/s^2, WVA Sin Control 0.5051 m/s^2, Mejora 20.5 % MSI Controlado 2.8562 %, MSI Sin Control 4.9204 %, Mejora 42.0 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 1.86 °, Cavitación media en Flap 5.20 °										
exper3e5.mat WVA Controlada MSI Controlado Tiempo que el 7 Cavitación med:	exper3e5.mat WVA Controlada 1.1305 m/s^2, WVA Sin Control 1.2803 m/s^2, Mejora 11.7 % MSI Controlado 36.2519 %, MSI Sin Control 41.4238 %, Mejora 12.5 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.00 seg Cavitación media en T-Foil 4.29 °, Cavitación media en Flap 4.03 °									
exper4e4.mat WVA Controlada 0.5978 m/s^2, WVA Sin Control 0.8175 m/s^2, Mejora 26.9 % MSI Controlado 3.9700 %, MSI Sin Control 7.8626 %, Mejora 49.5 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 3.48 °, Cavitación media en Flap 4.71 °										
exper4e5.mat WVA Controlada 1.5442 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 10.8 % MSI Controlado 45.4728 %, MSI Sin Control 50.4168 %, Mejora 9.8 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg Cavitación media en T-Foil 5.37 °, Cavitación media en Flap 5.08 °										
Promedio sobre los diferentes casos posibles.\n ************************************										
WVAc WVAs 0.83 0.95	MejWVA 14.01	MSIC 20.21	MSIs 23.48	MejMSI 22.92	TiempoTFout 0.46	CavitacionTF 2.97	CavitacionFL 3.41			

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

5.1.2 VELOCIDAD 20 NUDOS Y ESTADO DE LA MAR 5

En la Tabla 5.4 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J_{50} .

Tabla 5.4: Resultados del proceso de sintonía									
$\theta_{\rm G}$	195.17	9.7076	77.095	172.41	0.31993	9.8375			
θ_{OPT}	195.16	9.97	77.503	172.53	0.30259	9.294			
J_{G50}	0.7884								
J_{50}	0.7883								

En la Figura 5.6 se muestra el mejor valor de la función J_{G50} de cada generación.

Figura 5.6: Mejor valor de la función J_{G50} de cada generación.

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{195.2s + 194}{s + 77.5} \qquad G_{C2} = \frac{172.5s + 52.21}{s + 9.294}$$

En la Figura 5.7 y Figura 5.8 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CRIBAV

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.7: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.8: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.9 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CRIBAV .

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.9: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.10 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.10: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.2 se presentan los resultados del assessment.

CRIBAV -

Control Robusto e Inteligente de Buques de Alta Velocidad

Cuadro 5.2: Resultados del assessment.

exper2e4.mat NVA Controlada 0.5002 m/s^2, WVA Sin Control 0.5466 m/s^2, Mejora 8.5 % MSI Controlado 7.9748 %, MSI Sin Control 9.5028 %, Mejora 16.1 % Piempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 0.71 °, Cavitación media en Flap 0.73 °										
exper2e5.mat WVA Controlada 0.7949 m/s^2, WVA Sin Control 0.8408 m/s^2, Mejora 5.5 % MSI Controlado 24.7737 %, MSI Sin Control 26.7402 %, Mejora 7.4 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg Cavitación media en T-Foil 1.77 °, Cavitación media en Flap 0.75 °										
exper3e4.mat WVA Controlada 0.3994 m/s^2, WVA Sin Control 0.5051 m/s^2, Mejora 20.9 % MSI Controlado 2.8230 %, MSI Sin Control 4.9204 %, Mejora 42.6 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 1.66 °, Cavitación media en Flap 5.55 °										
exper3e5.mat WVA Controlada 1.1352 m/s^2, WVA Sin Control 1.2803 m/s^2, Mejora 11.3 % MSI Controlado 36.4182 %, MSI Sin Control 41.4238 %, Mejora 12.1 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.00 seg Cavitación media en T-Foil 4.22 °, Cavitación media en Flap 4.20 °										
exper4e4.mat WVA Controlada 0.5936 m/s^2, WVA Sin Control 0.8175 m/s^2, Mejora 27.4 % MSI Controlado 3.9048 %, MSI Sin Control 7.8626 %, Mejora 50.3 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 3.46 °, Cavitación media en Flap 4.98 °										
exper4e5.mat WVA Controlada 1.5415 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 11.0 % MSI Controlado 45.3973 %, MSI Sin Control 50.4168 %, Mejora 10.0 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg Cavitación media en T-Foil 5.27 °, Cavitación media en Flap 5.25 °										
Promedio sobre los diferentes casos posibles.\n										
WVAc WVAs MejWVA MSIc Msis MejMSI TiempoTFout CavitacionTF CavitacionFL 0.83 0.95 14.09 20.22 23.48 23.07 0.46 2.85 3.58										

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

5.1.3 VELOCIDAD 20 NUDOS Y ESTADO DE LA MAR 6

En la Tabla 5.5 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J₅₀.

Tabla 5.5: Resultados del proceso de sintonía										
$\theta_{\rm G}$	115.33	10.797	78.205	61.692	0.56448	8.3409				
θ_{OPT}	115.05	10.815	76.561	61.053	0.59246	8.3934				
J_{G50}	1.139									
J ₅₀	1.138									

En la Figura 5.11 se muestra el mejor valor de la función J_{G50} de cada generación.

Figura 5.11: Mejor valor de la función J_{G50} de cada generación.

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{115.1s + 1244}{s + 76.56} \qquad G_{C2} = \frac{61.05s + 36.17}{s + 8.393}$$

En la Figura 5.12 y Figura 5.13 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CRIBAV

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.12: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.13: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.14 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CRIBAV .

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.14: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.15 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.15: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.3 se presentan los resultados del assessment.

CRIBAV -

Control Robusto e Inteligente de Buques de Alta Velocidad

Cuadro 5.3: Resultados del assessment.

***********	******	* * * * * * * *	* * * * * * *	* * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * *			
exper2e4.mat WVA Controlada 0.5118 m/s^2, WVA Sin Control 0.5466 m/s^2, Mejora 6.4 % MSI Controlado 8.3514 %, MSI Sin Control 9.5028 %, Mejora 12.1 % Fiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 0.30 °, Cavitación media en Flap 0.53 °										
exper2e5.mat WVA Controlada 0.8068 m/s^2, WVA Sin Control 0.8408 m/s^2, Mejora 4.0 % MSI Controlado 25.2845 %, MSI Sin Control 26.7402 %, Mejora 5.4 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg Cavitación media en T-Foil 1.42 °, Cavitación media en Flap 0.67 °										
exper3e4.mat WVA Controlada 0.4470 m/s^2, WVA Sin Control 0.5051 m/s^2, Mejora 11.5 % MSI Controlado 3.7103 %, MSI Sin Control 4.9204 %, Mejora 24.6 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 0.74 °, Cavitación media en Flap 5.28 °										
exper3e5.mat WVA Controlada MSI Controlado Tiempo que el Cavitación med	exper3e5.mat WVA Controlada 1.1539 m/s^2, WVA Sin Control 1.2803 m/s^2, Mejora 9.9 % MSI Controlado 37.0882 %, MSI Sin Control 41.4238 %, Mejora 10.5 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg Cavitación media en T-Foil 3.75 °, Cavitación media en Flap 4.22 °									
<pre>************************************</pre>										
exper4e5.mat WVA Controlada 1.5145 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 12.5 % MSI Controlado 44.6386 %, MSI Sin Control 50.4168 %, Mejora 11.5 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg Cavitación media en T-Foil 5.11 °, Cavitación media en Flap 5.34 °										
Promedio sobre	e los di	ferentes *******	Casos	posible:	s.\n ************	* * * * * * * * * * * * * * * *	****			
WVAc WVAs 0.85 0.95	MejWVA 10.35	MSIC 20.71	MSIs 23.48	MejMSI 16.35	TiempoTFout 0.50	CavitacionTF 2.21	CavitacionFL 3.49			

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

5.1.4 VELOCIDAD 30 NUDOS Y ESTADO DE LA MAR 4

En la Tabla 5.6 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J_{50} .

. .

Tabla 5.6: Resultados del proceso de sintonía									
$\theta_{\rm G}$	3.2899	3.359	87.173	162.03	0.12429	4.9018			
θ_{OPT}	1.0001	2.8604	99.999	160.21	0.10022	4.9896			
J_{G50}	0.3735								
J_{50}	0.3734								

En la Figura 5.16 se muestra el mejor valor de la función J_{G50} de cada generación.

Figura 5.16: Mejor valor de la función J_{G50} de cada generación.

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{s + 2.861}{s + 100}$$
 $G_{C2} = \frac{160.2s + 16.06}{s + 4.99}$

En la Figura 5.17 y Figura 5.18 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.17: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.18: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.19 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CRIBAV of

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.19: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.20 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.20: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.4 se presentan los resultados del assessment.

CRIBAV -

Control Robusto e Inteligente de Buques de Alta Velocidad

Cuadro 5.4: Resultados del assessment.

******	* * * * * * *	* * * * * * *	* * * * * * * *	* * * * * * *	* * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	: * *			
exper2e WVA Con MSI Con Tiempo Cavitac	exper2e4.mat «VA Controlada 0.5057 m/s^2, WVA Sin Control 0.5466 m/s^2, Mejora 7.5 % «SI Controlado 8.1526 %, MSI Sin Control 9.5028 %, Mejora 14.2 % Fiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 1.35 °, Cavitación media en Flap 0.59 °										
exper2e WVA Con MSI Con Tiempo Cavitac	5.mat trolada trolado que el ión med ******	0.8009 25.030 T-Foil ia en T	m/s^2, 4 %, M está a n -Foil 2. *******	WVA Sin ISI Sin Menos de 56 °, C	Control Control 50 cm c avitació	l 0.8408 m/s^2, 26.7402 %, Me de profundidad ón media en Fla	Mejora 4.8 % jora 6.4 % 1.25 seg p 0.58 ° *****************	***			
exper3e WVA Con MSI Con Tiempo Cavitac ******	exper3e4.mat WVA Controlada 0.3735 m/s^2, WVA Sin Control 0.5051 m/s^2, Mejora 26.1 % MSI Controlado 2.3831 %, MSI Sin Control 4.9204 %, Mejora 51.6 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 2.30 °, Cavitación media en Flap 3.81 °										
exper3e WVA Con MSI Con Tiempo Cavitac ******	exper3e5.mat WVA Controlada 1.1374 m/s^2, WVA Sin Control 1.2803 m/s^2, Mejora 11.2 % MSI Controlado 36.4985 %, MSI Sin Control 41.4238 %, Mejora 11.9 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.00 seg Cavitación media en T-Foil 4.75 °, Cavitación media en Flap 3.89 °										
exper4e4.mat WVA Controlada 0.6003 m/s ² , WVA Sin Control 0.8175 m/s ² , Mejora 26.6 % MSI Controlado 4.0089 %, MSI Sin Control 7.8626 %, Mejora 49.0 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 4.04 °, Cavitación media en Flap 5.18 °											
exper4e5.mat WVA Controlada 1.5212 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 12.1 % MSI Controlado 44.8277 %, MSI Sin Control 50.4168 %, Mejora 11.1 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg Cavitación media en T-Foil 5.94 °, Cavitación media en Flap 5.56 °											
Promedi ******	o sobre ******	los di:	ferentes * * * * * * * *	Casos	posible:	5.\n *********	* * * * * * * * * * * * * * * *	*****			
WVAc 0.82	WVAs 0.95	MejWVA 14.69	MSIC 20.15	MSIs 23.48	MejMSI 24.03	TiempoTFout 0.46	CavitacionTF 3.49	CavitacionFL 3.27			

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

5.1.5 VELOCIDAD 30 NUDOS Y ESTADO DE LA MAR 5

En la Tabla 5.7 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J_{50} .

Tabla 5./: Resultados del proceso de sintonia									
$\theta_{\rm G}$	12.138	8.6255	76.986	144.39	0.12823	9.855			
θ_{OPT}	11.774	7.8599	76.985	147.63	0.12015	9.8551			
J_{G50}	1.0879								
J_{50}	1.0879								

En la Figura 5.21 se muestra el mejor valor de la función J_{G50} de cada generación.

Figura 5.21: Mejor valor de la función J_{G50} de cada generación.

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{11.77s + 92.54}{s + 76.98} \qquad G_{C2} = \frac{147.6s + 17.74}{s + 9.855}$$

En la Figura 5.22 y Figura 5.23 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CRIBAV

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.22: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.23: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.24 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.24: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.25 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.25: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.5 se presentan los resultados del assessment.

CRIBAV -

Control Robusto e Inteligente de Buques de Alta Velocidad

Cuadro 5.5: Resultados del assessment.

******	* * * * * * *	* * * * * * *	* * * * * * * *	******	******	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * *			
exper2e4.mat WVA Controlada 0.5023 m/s^2, WVA Sin Control 0.5466 m/s^2, Mejora 8.1 % MSI Controlado 8.0441 %, MSI Sin Control 9.5028 %, Mejora 15.4 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 0.94 °, Cavitación media en Flap 0.44 ° *******											
exper2e WVA Con MSI Con Tiempo Cavitac	exper2e5.mat NVA Controlada 0.8018 m/s^2, WVA Sin Control 0.8408 m/s^2, Mejora 4.6 % MSI Controlado 25.0681 %, MSI Sin Control 26.7402 %, Mejora 6.3 % Fiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg Cavitación media en T-Foil 2.82 °, Cavitación media en Flap 0.51 °										
exper3e WVA Con MSI Con Tiempo Cavitac	exper3e4.mat WVA Controlada 0.4022 m/s^2, WVA Sin Control 0.5051 m/s^2, Mejora 20.4 % MSI Controlado 2.8727 %, MSI Sin Control 4.9204 %, Mejora 41.6 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 1.72 °, Cavitación media en Flap 3.38 °										
exper3e5.mat WVA Controlada 1.0953 m/s^2, WVA Sin Control 1.2803 m/s^2, Mejora 14.4 % MSI Controlado 34.9721 %, MSI Sin Control 41.4238 %, Mejora 15.6 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg Cavitación media en T-Foil 5.35 °, Cavitación media en Flap 3.87 °											
exper4e4.mat WVA Controlada 0.6017 m/s^2, WVA Sin Control 0.8175 m/s^2, Mejora 26.4 % MSI Controlado 4.0312 %, MSI Sin Control 7.8626 %, Mejora 48.7 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 3.45 °, Cavitación media en Flap 5.08 °											
exper4e5.mat WVA Controlada 1.4759 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 14.8 % MSI Controlado 43.5304 %, MSI Sin Control 50.4168 %, Mejora 13.7 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg Cavitación media en T-Foil 6.33 °, Cavitación media en Flap 5.41 °											
Promedio sobre los diferentes casos posibles.\n											
WVAc 0.81	WVAs 0.95	MejWVA 14.78	MSIC 19.75	MSIs 23.48	MejMSI 23.53	TiempoTFout 0.50	CavitacionTF 3.44	CavitacionFL 3.11			
CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

5.1.6 VELOCIDAD 30 NUDOS Y ESTADO DE LA MAR 6

En la Tabla 5.8 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J_{50} .

Tabla 5.8: Resultados del proceso de sintonía								
$\theta_{\rm G}$	67.716	11.536	86.334	134.4	0.10746	9.5539		
θ_{OPT}	68.555	11.125	85.398	134.14	0.13573	9.8615		
J_{G50}	1.4124							
J_{50}	1.4122							

En la Figura 5.26 se muestra el mejor valor de la función J_{G50} de cada generación.

Figura 5.26: Mejor valor de la función J_{G50} de cada generación.

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{68.55s + 762.6}{s + 85.4} \qquad G_{C2} = \frac{134.1s + 18.21}{s + 9.861}$$

En la Figura 5.27 y Figura 5.28 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CRIBAV

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.27: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.28: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.29 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.29: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.30 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.30: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.6 se presentan los resultados del assessment.

CRIBAV -

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

Control Robusto e Inteligente de Buques de Alta Velocidad

Cuadro 5.6: Resultados del assessment.

******	******	* * * * * * * *	******	* * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* *
exper2e4.mat WVA Controlada MSI Controlado Tiempo que el T Cavitación medi	0.5029 8.0621 C-Foil e a en T-	m/s^2, %, MS está a n -Foil 0. ********	WVA Sin SI Sin C menos de 83 °, C	Control ontrol 9 50 cm c avitació	L 0.5466 m/s^2, 0.5028 %, Mejo: de profundidad 5n media en Fla	Mejora 8.0 % ra 15.2 % 0.00 seg p 0.51 ° ***************	**
exper2e5.mat WVA Controlada MSI Controlado Tiempo que el T Cavitación medi ************	0.8018 25.0680 C-Foil e a en T-	m/s^2,) %, M está a n -Foil 2.	WVA Sin ISI Sin Nenos de 53 °, C	Control Control 50 cm c avitació	L 0.8408 m/s^2, 26.7402 %, Me de profundidad 5n media en Fla	Mejora 4.6 % jora 6.3 % 1.25 seg p 0.59 ° *******	**
exper3e4.mat WVA Controlada MSI Controlado Tiempo que el T Cavitación medi ************	0.4104 3.0194 C-Foil e a en T-	m/s^2, %, MS está a n -Foil 1.	WVA Sin SI Sin C Menos de 44 °, C	Control ontrol 4 50 cm c avitació	L 0.5051 m/s^2, 4.9204 %, Mejo: de profundidad 5n media en Flag	Mejora 18.7 % ra 38.6 % 0.00 seg p 4.10 ° ******	**
exper3e5.mat WVA Controlada MSI Controlado Tiempo que el T Cavitación medi ************	1.1008 35.1718 2-Foil e .a en T-	m/s^2, 3 %, M está a n -Foil 5. *******	WVA Sin ISI Sin Nenos de 14 °, C	Control Control 50 cm c avitació	l 1.2803 m/s^2, 41.4238 %, Me de profundidad on media en Flaj	Mejora 14.0 % jora 15.1 % 1.25 seg p 3.91 ° ******	**
exper4e4.mat WVA Controlada MSI Controlado Tiempo que el T Cavitación medi ************	exper4e4.mat WVA Controlada 0.6122 m/s^2, WVA Sin Control 0.8175 m/s^2, Mejora 25.1 % MSI Controlado 4.1968 %, MSI Sin Control 7.8626 %, Mejora 46.6 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 3.01 °, Cavitación media en Flap 4.87 °						
exper4e5.mat WVA Controlada 1.4758 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 14.8 % MSI Controlado 43.5291 %, MSI Sin Control 50.4168 %, Mejora 13.7 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg Cavitación media en T-Foil 6.08 °, Cavitación media en Flap 5.31 °							
Promedio sobre *********	los dif	ferentes	Casos	posibles	5.\n ******	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
WVAc WVAs 0.82 0.95	MejWVA 14.21	MSIC 19.84	MSIs 23.48	MejMSI 22.57	TiempoTFout 0.50	CavitacionTF 3.17	CavitacionFL 3.21

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

5.1.7 VELOCIDAD 40 NUDOS Y ESTADO DE LA MAR 4

En la Tabla 5.9 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J_{50} .

. .

	T	abla 5.9: Resulte	idos del proceso	o de sintonía		
θ_{G}	228.5	0.11483	92.747	170.4	0.13906	7.6444
θ_{OPT}	228.74	0.13062	92.761	170.35	0.10288	7.6872
J_{G50}	0.58261					
Jeo	0.58258					

Figura 5.31: Mejor valor de la función J_{G50} *de cada generación.*

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{228.7s + 29.88}{s + 92.76} \qquad G_{C2} = \frac{170.4s + 17.53}{s + 7.687}$$

En la Figura 5.32 y Figura 5.33 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.32: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.33: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.34 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.34: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.35 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.35: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.7 se presentan los resultados del assessment.

CRIBAV -

Control Robusto e Inteligente de Buques de Alta Velocidad

Cuadro 5.7: Resultados del assessment.

*******	* * * * * * *	* * * * * * * *	******	******	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	: * *
exper2e4.mat WVA Controlada MSI Controlado Tiempo que el Cavitación med	0.5024 8.0473 T-Foil ia en T *******	m/s^2, %, MS está a n -Foil 1. *******	WVA Sin SI Sin C menos de 15 °, C	Control ontrol 9 50 cm c avitació	l 0.5466 m/s^2, 0.5028 %, Mejo de profundidad ón media en Fla	Mejora 8.1 % ra 15.3 % 0.00 seg p 0.52 ° ******************	**
exper2e5.mat WVA Controlada MSI Controlado Tiempo que el Cavitación med	0.7998 24.984 T-Foil ia en T ******	m/s^2, 2 %, N está a n -Foil 2. ********	WVA Sin ISI Sin Menos de 70 °, C	Control Control 50 cm c avitació	l 0.8408 m/s^2, 26.7402 %, Me de profundidad ón media en Fla	Mejora 4.9 % jora 6.6 % 1.25 seg p 0.55 ° ******************	***
exper3e4.mat WVA Controlada MSI Controlado Tiempo que el Cavitación med	0.3834 2.5473 T-Foil ia en T ******	m/s^2, %, MS está a n -Foil 2. *******	WVA Sin SI Sin C menos de .07 °, C	Control ontrol 50 cm c avitació	l 0.5051 m/s^2, 4.9204 %, Mejo de profundidad ón media en Fla	Mejora 24.1 % ra 48.2 % 0.00 seg p 3.53 ° ******************	**
exper3e5.mat WVA Controlada MSI Controlado Tiempo que el Cavitación med	1.1120 35.579 T-Foil ia en T ******	m/s^2, 8 %, N está a n -Foil 5. *******	WVA Sin ISI Sin Menos de 10 °, C	Control Control 50 cm c avitació	l 1.2803 m/s^2, 41.4238 %, Me de profundidad ón media en Fla	Mejora 13.1 % jora 14.1 % 1.00 seg p 3.86 ° ******************	**
exper4e4.mat WVA Controlada MSI Controlado Tiempo que el Cavitación med	0.5826 3.7355 T-Foil ia en T ******	m/s^2, %, MS está a n -Foil 3. *******	WVA Sin SI Sin C menos de .98 °, C	Control ontrol 50 cm c avitació	l 0.8175 m/s^2, 7.8626 %, Mejo de profundidad ón media en Fla ******	Mejora 28.7 % ra 52.5 % 0.00 seg p 5.17 ° ******************	**
exper4e5.mat WVA Controlada MSI Controlado Tiempo que el Cavitación med	1.4970 44.138 T-Foil ia en T ******	m/s^2, 0 %, N está a n -Foil 6. *******	WVA Sin MSI Sin Menos de 21 °, C	Control Control 50 cm c avitació	l 1.7313 m/s^2, 50.4168 %, Me de profundidad ón media en Fla *******	Mejora 13.5 % jora 12.5 % 0.50 seg p 5.49 ° ******************	****
Promedio sobre	los di	ferentes * * * * * * * *	3 casos	posible:	5.\n ************	* * * * * * * * * * * * * * * *	****
WVAc WVAs 0.81 0.95	MejWVA 15.41	MSIC 19.84	MSIs 23.48	MejMSI 24.86	TiempoTFout 0.46	CavitacionTF 3.53	CavitacionFL 3.19

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

5.1.8 VELOCIDAD 40 NUDOS Y ESTADO DE LA MAR 5

En la Tabla 5.10 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J_{50} .

	Tal	bla 5.10: Result	ados del proces	o de sintonía		
$\theta_{\rm G}$	2.1474	1.2999	76.957	91.775	0.22678	9.9298
θ_{OPT}	5.7045	6.0098	67.909	82.614	0.35326	9.9644
J_{G50}	1.4519					
J_{50}	1.4512					

En la Figura 5.35 se muestra el mejor valor de la función J_{G50} de cada generación.

Figura 5.35: Mejor valor de la función J_{G50} de cada generación.

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{5.704s + 34.28}{s + 67.91} \qquad G_{C2} = \frac{82.61s + 29.18}{s + 9.964}$$

En la Figura 5.36 y Figura 5.37 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.36: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.37: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.38 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.38: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.39 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.39: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.8 se presentan los resultados del assessment.

CRIBAV -

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

Control Robusto e Inteligente de Buques de Alta Velocidad

Cuadro 5.8: Resultados del assessment.

******	* * * * * * *	* * * * * * *	* * * * * * * *	******	* * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* *
exper2e WVA Con MSI Con Tiempo Cavitac ******	exper2e4.mat VVA Controlada 0.5099 m/s^2, WVA Sin Control 0.5466 m/s^2, Mejora 6.7 % MSI Controlado 8.2884 %, MSI Sin Control 9.5028 %, Mejora 12.8 % Fiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 0.61 °, Cavitación media en Flap 0.24 °							
exper2e WVA Con MSI Con Tiempo Cavitac	5.mat trolada trolado que el ión med	0.8110 25.467 T-Foil ia en T	m/s^2, 2 %, N está a n -Foil 2. *******	WVA Sin ASI Sin Menos de .33 °, C	Control Control 50 cm c avitació	L 0.8408 m/s^2, 26.7402 %, Me de profundidad ón media en Fla	Mejora 3.5 % jora 4.8 % 1.25 seg p 0.39 ° *****************	**
exper3e WVA Con MSI Con Tiempo Cavitac	xper3e4.mat NVA Controlada 0.4343 m/s^2, WVA Sin Control 0.5051 m/s^2, Mejora 14.0 % ISI Controlado 3.4654 %, MSI Sin Control 4.9204 %, Mejora 29.6 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Javitación media en T-Foil 1.04 °, Cavitación media en Flap 3.22 °							
exper3e WVA Con MSI Con Tiempo Cavitac ******	5.mat trolada trolado que el ión med ******	1.1225 35.962 T-Foil ia en T	m/s^2, 2 %, N está a n -Foil 4. *******	WVA Sin ASI Sin Menos de .88 °, C	Control Control 50 cm c avitació	l 1.2803 m/s^2, 41.4238 %, Me de profundidad ón media en Fla	Mejora 12.3 % jora 13.2 % 1.25 seg p 3.93 °	**
exper4e WVA Con MSI Con Tiempo Cavitac	4.mat trolada trolado que el ión med	0.6477 4.7744 T-Foil ia en T ******	m/s^2, %, Ms está a n -Foil 2. *******	WVA Sin SI Sin C Menos de .50 °, C	Control ontrol 7 50 cm c avitació	l 0.8175 m/s^2, 7.8626 %, Mejo le profundidad ón media en Fla **************	Mejora 20.8 % ra 39.3 % 0.00 seg p 5.08 ° *****************	**
exper4e WVA Con MSI Con Tiempo Cavitac	exper4e5.mat WVA Controlada 1.4650 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 15.4 % MSI Controlado 43.2142 %, MSI Sin Control 50.4168 %, Mejora 14.3 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg Cavitación media en T-Foil 6.16 °, Cavitación media en Flap 5.43 °							
Promedi	o sobre	los di	ferentes	casos	posibles	s.\n		
******	*****	******	* * * * * * * *	******	* * * * * * * *	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *	*****
WVAc 0.83	WVAs 0.95	MejWVA 12.12	MSIC 20.20	MSIs 23.48	MejMSI 18.98	TiempoTFout 0.50	CavitacionTF 2.92	CavitacionFL 3.05

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

5.1.9 VELOCIDAD 40 NUDOS Y ESTADO DE LA MAR 6

En la Tabla 5.11 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J₅₀.

Tabla 5.11: Resultados del proceso de sintonía							
θ_{G}	42.67	11.835	53.947	72.922	0.17427	9.9922	
θ_{OPT}	42.669	11.835	53.947	72.922	0.17374	9.9922	
J_{G50}	1.7758						
J.50	1.7758						

En la Figura 5.41 se muestra el mejor valor de la función J_{G50} de cada generación.

Figura 5.41: Mejor valor de la función J_{G50} de cada generación.

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{42.67s + 505}{s + 53.95} \qquad G_{C2} = \frac{72.9s + 12.67}{s + 9.992}$$

En la Figura 5.42 y Figura 5.43 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.42: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.43: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.44 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.44: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.45 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.45: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.9 se presentan los resultados del assessment.

CRIBAV -

Control Robusto e Inteligente de Buques de Alta Velocidad

Cuadro 5.9: Resultados del assessment.

*****	* * * * * * *	******	******	* * * * * * * *	*****	* * * * * * * * * * * * * * * *	* *
exper2e4.mat WVA Controlada C MSI Controlado 8 Tiempo que el T- Cavitación media	0.5167 8.5105 -Foil e a en T- ******	m/s^2, %, MS stá a m Foil 0.	WVA Sin I Sin C enos de 33 °, C	Control ontrol 9 50 cm c avitació	0.5466 m/s^2, 0.5028 %, Mejoo de profundidad on media en Fla ************	Mejora 5.5 % ra 10.4 % 0.00 seg p 0.32 ° ******	**
exper2e5.mat							
WVA Controlada (MSI Controlado 2 Tiempo que el T- Cavitación media	0.8119 25.5032 -Foil e a en T- ******	m/s^2, %, M stá a m Foil 1.	WVA Sin ISI Sin Nenos de 78°, C	Control Control 50 cm c avitació	0.8408 m/s^2, 26.7402 %, Me de profundidad in media en Fla	Mejora 3.4 % jora 4.6 % 1.25 seg p 0.52 ° ***************	**
exper3e4.mat							
WVA Controlada (MSI Controlado 3 Tiempo que el T- Cavitación media	0.4478 3.7267 -Foil e a en T- ******	m/s^2, %, MS stá a m Foil 0.	WVA Sin I Sin C enos de 71 °, C	Control ontrol 4 50 cm d avitació	0.5051 m/s^2, 9204 %, Mejo: de profundidad on media en Flag	Mejora 11.3 % ra 24.3 % 0.00 seg p 3.93 ° *****	**
exper3e5.mat							
WVA Controlada 1 MSI Controlado 3 Tiempo que el T- Cavitación media	1.1496 36.9367 -Foil e a en T- *******	m/s^2, %, M stá a m Foil 4. ******	WVA Sin ISI Sin Nenos de 06 °, C	Control Control 50 cm d avitació	1.2803 m/s ² , 41.4238 %, Me de profundidad on media en Flaj	Mejora 10.2 % jora 10.8 % 1.25 seg p 3.73 ° *****************	**
exper4e4.mat							
WVA Controlada O MSI Controlado 5 Tiempo que el T- Cavitación media	0.6806 5.3332 -Foil e	m/s^2, %, MS stá a m	WVA Sin SI Sin C Nenos de 70 ° C	Control ontrol 7 50 cm d	0.8175 m/s^2, 7.8626 %, Mejo: de profundidad	Mejora 16.7 % ra 32.2 % 0.00 seg p 4 64 °	
******	******	******	******	********	*************	*****	**
exper4e5.mat WVA Controlada 1 MSI Controlado 4 Tiempo que el T- Cavitación media	1.4803 43.6576 -Foil e a en T- *******	m/s^2, %, M stá a m Foil 5. ******	WVA Sin ISI Sin Nenos de 38°, C	Control Control 50 cm c avitacić	1.7313 m/s^2, 50.4168 %, Me de profundidad in media en Flag	Mejora 14.5 % jora 13.4 % 0.50 seg p 5.17 ° *****************	*****
Promedio sobre 1	los dif ******	erentes	Casos	posibles ******	s.\n ******	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
WVAc WVAs M	leiWVA	MSIC	MSIs	MeiMSI	TiempoTFout	CavitacionTF	CavitacionFL
0.85 0.95 1	0.29	20.61	23.48	15.96	0.50	2.33	3.05

CRIBAV -

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

5.2 REDES DE 2° ORDEN

En la Tabla 5.12 se muestran los vectores de parámetros θ_{opt} obtenidos para las redes de segundo orden tras aplicar el método de sintonía propuesto a distintas velocidades y SNN.

	sinionia propiesio a distintas velocidades y 5111								
	V=20	V=20	V=20	V=30	V=30	V=30	V=40	V=40	V=40
	SSN=4	SSN=5	SSN=6	SSN=4	SSN=5	SSN=6	SSN=4	SSN=5	SSN=6
K _{C1}	152.85	128.05	43.2	27.34	8.966	222.65	64.87	123.37	67.63
A ₁	27.71	26.95	4.263	4.781	21.90	11.58	1.546	26.92	27.52
B ₁	197.75	146.08	222.01	168.31	165.71	34.10	89.15	42.01	195.49
C ₁	14.83	1.328	42.967	7.774	3.023	35.64	8.656	12.41	6.704
D ₁	625.3	357.58	489.73	599.28	504.06	462.66	541.44	267.14	616.6
K _{C2}	153.3	148.2	156.78	170.52	165.56	75.54	171.73	149.29	156.32
A ₂	2.717	2.566	2.466	3.872	3.072	1.66	2.99	1.046	2.835
B ₂	1.775	0.853	2.545	0.5486	1.081	0.926	4.236	1.871	0.498
C ₂	2.565	2.642	5.708	3.306	6.111	1.951	2.985	3.602	6.505
D_2	22.445	15.68	45.49	19.51	31.25	9.983	32.06	17.43	44.27

Tabla 5.12: Vectores de parámetros θ_{opt} obtenidos para las redes de segundo orden tras aplicar el método de sintonía propuesto a distintas velocidades y SNN

En la Tabla 5.13 se muestra los porcentajes de mejora en la aceleración vertical media J y en el índice de mareo MSI obtenidos en simulación² utilizando las redes de primer orden sintonizadas.

Tabla 5.13: Porcentajes de mejora en la aceleración vertical media J y en el índice de mareo MSI obte	enidos en
simulación utilizando las redes de segundo orden sintonizadas.	

	Mejora en la J	Mejora en el MSI
V=20 SSN=4	10.2 %	18.7 %
V=20 SSN=5	5.8 %	7.2 %
V=20 SSN=6	3.2 %	3.6 %
V=30 SSN=4	28.0 %	52.9 %
V=30 SSN=5	14.6 %	15.4 %
V=30 SSN=6	8.5 %	7.3 %
V=40 SSN=4	30.2 %	53.3 %
V=40 SSN=5	18.4 %	17.1 %
V=40 SSN=6	10.6 %	7.1 %

² La simulación se realiza sobre el total de puntos disponibles de la serie temporal de oleaje de entrada para cada par de condiciones de velocidad y estado de la mar.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

5.2.1 VELOCIDAD 20 NUDOS Y ESTADO DE LA MAR 4

En la Tabla 5.14 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J₅₀.

1 ubiu 5.17		mu	
θ _G	θ_{opt}	$\mathbf{J}_{\mathrm{G50}}$	J_{50}
152.66	152.85	0.49548	0.49509
28.585	27.705		
196.05	197.75		
11.902	14.825		
625.8	625.3		
154.94	153.3		
3.0214	2.7167		
1.4405	1.7752		
3.4084	2.5654		
23.971	22.445		

Tabla 5 14. Resultados del proceso de sintonía

Figura 5.46: Mejor valor de la función J_{G50} *de cada generación.*

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{152.8s^2 + 4235s + 30230}{s^2 + 14.82s + 625.3} \qquad G_{C1} = \frac{153.3s^2 + 416.5s + 272.1}{s^2 + 2.565s + 22.45}$$

En la Tabla 5.15 y Tabla 5.16 se muestran los ceros y polos de G_{C1} y G_{C2} respectivamente.

CRIBAV

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCI	DAD
--	-----

Tabla 5.15: Ceros y polos de G_{Cl}			
Ceros		Frecuencia natural	Factor de
		(rad/seg)	amortiguamiento δ
-13.852 +	2.4212i	14.062	0.98507
-13.852 -	2.4212i	14.062	0.98507
Polos		Frecuencia natural	Factor de
		(rad/seg)	amortiguamiento δ
-7.4124 +	23.882i	25.006	0.29642
-7.4124 -	23.882i	25.006	0.29642
	Tabla 5.1	6: Ceros y polos de G _C	2
Ceros		Frecuencia natural	Factor de
		(rad/seg)	amortiguamiento δ
-1.6228		1.6228	1
-1.0939		1.0939	1

Polos		Frecuencia natural	Factor de
		(rad/seg)	amortiguamiento δ
-1.2827 +	4.5607i	4.7376	0.27075
-1.2827 -	4.5607i	4.7376	0.27075

En la Figura 5.47 y Figura 5.48 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

Figura 5.47: Posición del Flap cuando se realiza la simulación del proceso controlado.

CRIBAV

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.48: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.49 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

Figura 5.49: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

En la Figura 5.50 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.50: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.10 se presentan los resultados del assessment.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Cuadro 5.10: Resultados del assessment.

```
exper2e4.mat
WVA Controlada 0.4951 m/s^2, WVA Sin Control 0.5466 m/s^2, Mejora 9.4 %
MSI Controlado 7.8110 %, MSI Sin Control 9.5028 %,
                                                Mejora 17.8 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 0.78 °, Cavitación media en Flap 0.86 °
                                                               *****
exper2e5.mat
WVA Controlada 0.7886 m/s^2, WVA Sin Control 0.8408 m/s^2, Mejora 6.2 %
MSI Controlado 24.4979 %, MSI Sin Control 26.7402 %, Mejora 8.4 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg
Cavitación media en T-Foil 1.61 °, Cavitación media en Flap 0.81 °
exper3e4.mat
WVA Controlada 0.3927 m/s^2, WVA Sin Control 0.5051 m/s^2, Mejora 22.3 %
MSI Controlado 2.7057 %, MSI Sin Control 4.9204 %, Mejora 45.0 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 1.74 °, Cavitación media en Flap 6.68 °
                                                         exper3e5.mat
WVA Controlada 1.1334 m/s^2, WVA Sin Control 1.2803 m/s^2, Mejora 11.5 %
MSI Controlado 36.3548 %, MSI Sin Control 41.4238 %, Mejora 12.2 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.00 seg
Cavitación media en T-Foil 4.51 °, Cavitación media en Flap 4.36
exper4e4.mat
MSI Controlado 3.8959 %, MSI Sin Control 7.8626 %, Mejora 50.5 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 3.65 °, Cavitación media en Flap 4.98
                                                              ******
exper4e5.mat
WVA Controlada 1.4807 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 14.5 %
MSI Controlado 43.6699 %, MSI Sin Control 50.4168 %, Mejora 13.4 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg
Cavitación media en T-Foil 5.84 º, Cavitación media en Flap 5.28 º
                                          Promedio sobre los diferentes casos posibles.\n
                                        ******
*****************
                     * * * * * * * * * * * * *
             MejWVA MSIc MSIs MejMSI TiempoTFout CavitacionTF CavitacionFL
WVAc
      WVAs
0.81
      0.95
             15.22 19.82 23.48 24.54 0.46
                                                     3.02
                                                                   3.83
```

5.2.2 VELOCIDAD 20 NUDOS Y ESTADO DE LA MAR 5

En la Tabla 5.17 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J_{50} .

Tubla 5.17. Resultatos del proceso de sintonia			
$\theta_{ m G}$	θ_{opt}	J_{G50}	\mathbf{J}_{50}
124.77	128.05	0.78077	0.77938
26.625	26.948		
145.01	146.08		
1.2975	1.3282		
356.83	357.58		
147.98	148.2		
3.8928	2.5664		
0.86348	0.8531		
3.4648	2.6422		
25.067	15.683		

Tabla 5.17: Resultados del proceso de sintonía

En la Figura 5.51 se muestra el mejor valor de la función J_{G50} de cada generación.

Control Robusto e Inteligente de Buques de Alta Velocidad

Figura 5.51: Mejor valor de la función J_{G50} *de cada generación.*

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

 $G_{C1} = \frac{128s^2 + 3451s + 18710}{s^2 + 1.1328s + 357.6} \qquad G_{C1} = \frac{148.20s^2 + 380.3s + 126.4}{s^2 + 2.642s + 15.68}$

En la Tabla 5.18 y Tabla 5.19 se muestran los ceros y polos de G_{C1} y G_{C2} respectivamente.

Tabla 5.18: Ceros y polos de G_{C1}			
Ceros	Frecuencia natural	Factor de	
	(rad/seg)	amortiguamiento δ	
-19.43	19.43	1	
-7.5183	7.5183	1	

10105	(rad/seg)	amortiguamiento δ
-0.66408 + 18.898i	18.91	0.035118
-0.66408 - 18.898i	18.91	0.035118

Tabla 5.19: Ceros y polos de G_{C2}			
Ceros	Frecuencia natural	Factor de	
	(rad/seg)	amortiguamiento δ	
2.1739	2.1739	1	
-0.39242	0.39242	1	

Pe	olos	Frecuencia natural (rad/seg)	Factor de amortiguamiento δ
-1.3211 +	3.7333i	3.9601	0.3336
-1.3211 -	3.7333i	3.9601	0.3336

En la Figura 5.52 y Figura 5.53 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CRIBAV

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.52: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.53: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.54 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.54: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.55 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.55: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.11 se presentan los resultados del assessment.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Cuadro 5.11: Resultados del assessment.

exper2e4.mat WVA Controlada 0.4968 m/s^2, WVA Sin MSI Controlado 7.8646 %, MSI Sin G Tiempo que el T-Foil está a menos d Cavitación media en T-Foil 0.97 °, (************************************	n Control 0.5466 m/s^2, Control 9.5028 %, Mejc le 50 cm de profundidad Cavitación media en Fla *******	, Mejora 9.1 % ora 17.2 % 0.00 seg ap 0.77 ° *******************	***
exper2e5.mat WVA Controlada 0.7858 m/s^2, WVA Sin MSI Controlado 24.3767 %, MSI Sin Tiempo que el T-Foil está a menos da Cavitación media en T-Foil 2.01 °, (************************************	n Control 0.8408 m/s^2, Control 26.7402 %, Me le 50 cm de profundidad Cavitación media en Fla *******	, Mejora 6.5 % ejora 8.8 % 1.25 seg ap 0.76 °	***
exper3e4.mat WVA Controlada 0.3803 m/s ² , WVA Sin MSI Controlado 2.4959 %, MSI Sin G Tiempo que el T-Foil está a menos de Cavitación media en T-Foil 2.31 °, G	n Control 0.5051 m/s^2, Control 4.9204 %, Mejc le 50 cm de profundidad Cavitación media en Fla	, Mejora 24.7 % ora 49.3 % 0.00 seg ap 6.18 ° ********************	***
exper3e5.mat WVA Controlada 1.1314 m/s^2, WVA Sin MSI Controlado 36.2827 %, MSI Sin Tiempo que el T-Foil está a menos de Cavitación media en T-Foil 4.74 °, *******	n Control 1.2803 m/s^2, Control 41.4238 %, Me le 50 cm de profundidad Cavitación media en Fla	, Mejora 11.6 % ejora 12.4 % 1.25 seg ap 4.12 °	***
exper4e4.mat WVA Controlada 0.5938 m/s^2, WVA Sin MSI Controlado 3.9083 %, MSI Sin (Tiempo que el T-Foil está a menos de Cavitación media en T-Foil 3.80 °, (n Control 0.8175 m/s^2, Control 7.8626 %, Mejc le 50 cm de profundidad Cavitación media en Fla	, Mejora 27.4 % ora 50.3 % 0.00 seg ap 4.68 °	***
exper4e5.mat WVA Controlada 1.4919 m/s ² , WVA Sin MSI Controlado 43.9923 %, MSI Sin Tiempo que el T-Foil está a menos de Cavitación media en T-Foil 5.79 °, *********	n Control 1.7313 m/s^2, Control 50.4168 %, Me le 50 cm de profundidad Cavitación media en Fla	, Mejora 13.8 % ejora 12.7 % 0.50 seg ap 5.17 ° ********	****
Promedio sobre los diferentes casos	posibles.\n *******************************	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
WVAc WVAs MejWVA MSIc MSIs 0.81 0.95 15.53 19.82 23.48	MejMSI TiempoTFout 25.13 0.50	CavitacionTF 3.27	CavitacionFL 3.61

5.2.3 VELOCIDAD 20 NUDOS Y ESTADO DE LA MAR 6

En la Tabla 5.20 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J_{50} .

<i>Tabla 3.20</i>	: Resultados del proc	eso de sínio	onia
$\theta_{ m G}$	$\theta_{\rm opt}$	$\mathbf{J}_{\mathbf{G50}}$	J_{50}
50.374	43.2	1.1345	1.1336
3.8241	4.2629		
226.77	222.01		
47.758	42.967		
504.43	489.73		
168.13	156.78		
2.9013	2.4662		
2.7741	2.5451		
5.4717	5.7077		
42.492	45.495		

Tabla 5 20: Resultados del proceso de sintonía

En la Figura 5.56 se muestra el mejor valor de la función J_{G50} de cada generación.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.56: Mejor valor de la función J_{G50} *de cada generación.*

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{43.2s^2 + 184.2s + 9591}{s^2 + 42.97s + 489.7} \qquad G_{C1} = \frac{156.8s^2 + 386.7s + 399}{s^2 + 5.708s + 45.5}$$

En la Tabla 5.21 y Tabla 5.22 se muestran los ceros y polos de G_{C1} y G_{C2} respectivamente.

Tabla 5.21: Ceros y polos de G_{C1}			
Ceros		Frecuencia natural	Factor de
		(rad/seg)	amortiguamiento δ
-2.1314 +	14.747i	14.9	0.14305
-2.1314 -	14.747i	14.9	0.14305

Polos	F	Frecuencia natural (rad/seg)	Factor de amortiguamiento δ
-21.484 + 5.	3082i	22.13	0.97081
-21.484 - 5.	30821	22.13	0.97081

Tabla 5.22: Ceros y polos de G_{C2}				
Ceros		Frecuencia natural	Factor de	
		(rad/seg)	amortiguamiento δ	
-1.2331 +	1.0122i	1.5953	0.77294	
-1.2331 -	1.0122i	1.5953	0.77294	

P	olos	Frecuencia natural (rad/seg)	Factor de amortiguamiento δ
-2.8539 +	6.1115i	6.745	0.42311
-2.8539 -	6.1115i	6.745	0.42311

En la Figura 5.57 y Figura 5.58 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CRIBAV

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.57: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.58: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.59 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CRIBAV of

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.59: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.60 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.60: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.12 se presentan los resultados del assessment.

CRIBAV —

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

Control Robusto e Inteligente de Buques de Alta Velocidad

Cuadro 5.12: Resultados del assessment.

exper2e4.mat WVA Controlada 0.5071 m/s^2, WVA Sin Control 0.5466 m/s^2, Mejora 7.2 % MSI Controlado 8.1989 %, MSI Sin Control 9.5028 %, Mejora 13.7 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 0.37 °, Cavitación media en Flap 0.71 °	
exper2e5.mat WVA Controlada 0.8005 m/s^2, WVA Sin Control 0.8408 m/s^2, Mejora 4.8 % MSI Controlado 25.0123 %, MSI Sin Control 26.7402 %, Mejora 6.5 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg Cavitación media en T-Foil 1.63 °, Cavitación media en Flap 0.76 °	
exper3e4.mat WVA Controlada 0.4371 m/s^2, WVA Sin Control 0.5051 m/s^2, Mejora 13.5 % MSI Controlado 3.5179 %, MSI Sin Control 4.9204 %, Mejora 28.5 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 0.69 °, Cavitación media en Flap 6.17 °	
exper3e5.mat WVA Controlada 1.1437 m/s^2, WVA Sin Control 1.2803 m/s^2, Mejora 10.7 % MSI Controlado 36.7262 %, MSI Sin Control 41.4238 %, Mejora 11.3 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg Cavitación media en T-Foil 4.08 °, Cavitación media en Flap 4.56 °	
exper4e4.mat WVA Controlada 0.6676 m/s^2, WVA Sin Control 0.8175 m/s^2, Mejora 18.3 % MSI Controlado 5.1102 %, MSI Sin Control 7.8626 %, Mejora 35.0 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 1.93 °, Cavitación media en Flap 5.33 °	
exper4e5.mat WVA Controlada 1.4624 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 15.5 % MSI Controlado 43.1393 %, MSI Sin Control 50.4168 %, Mejora 14.4 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg Cavitación media en T-Foil 5.23 °, Cavitación media en Flap 5.48 ° ********	
Promedio sobre los diferentes casos posibles.\n	
WVAc WVAs MejWVA MSIc Msis MejMSI TiempoTFout CavitacionTF CavitacionFL 0.84 0.95 11.67 20.28 23.48 18.24 0.50 2.32 3.83	

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

5.2.4 VELOCIDAD 30 NUDOS Y ESTADO DE LA MAR 4

En la Tabla 5.23 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J_{50} .

1 ubiu 5.25	Tubiu 5.25. Resultatos del proceso de sintonia				
$\theta_{ m G}$	θ_{opt}	J_{G50}	J_{50}		
22.717	27.347	0.36319	0.36233		
5.9558	4.7811				
153.97	168.31				
8.5991	7.7745				
585.77	599.28				
173.84	170.52				
3.9651	3.8723				
0.70431	0.54862				
2.7849	3.3058				
20.66	19.509				

T 11 T A A	D 1 1		
Tabla 5.23:	Resultados	del proceso	de sintonía

En la Figura 5.61 se muestra el mejor valor de la función J_{G50} de cada generación.

Figura 5.61: Mejor valor de la función J_{G50} de cada generación.

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{27.35s^2 + 130.7s + 4603}{s^2 + 7.775s + 599.3} \qquad G_{C1} = \frac{170.5s^2 + 660.3s + 93.55}{s^2 + 3.306s + 19.51}$$

En la Tabla 5.24 y Tabla 5.25 se muestran los ceros y polos de G_{C1} y G_{C2} respectivamente.

	Tabla 5.24: Ceros y polos de G _{Cl}				
Ceros		Frecuencia natural	Factor de		
		(rad/seg)	amortiguamiento δ		
-2.3905 +	12.751i	12.973	0.18427		
-2.3905 -	12.751i	12.973	0.18427		
Polos		Frequencia natural	Factor de		
1 0105		(rad/seg)	amortiguamiento δ		
-3 8873 +	24.17i	24.48	0.15879		
5.0075					
-3.8873 -	24.17i	24.48	0.15879		
-3.8873 - Ceros	24.17i Tabla 5.2	24.48 25: Ceros y polos de Go Frecuencia natural	0.15879 72 Factor de		
-3.8873 -	24.17i Tabla 5.2	24.48 25: Ceros y polos de G _c Frecuencia natural (rad/seg)	²² Factor de amortiguamiento δ		
-3.8873 - Ceros	24.17i Tabla 5.2	24.48 25: Ceros y polos de G _c Frecuencia natural (rad/seg) 3.7251	0.15879 Factor de amortiguamiento δ		
-3.8873 - Ceros	24.17i <i>Tabla 5.2</i>	24.48 25: Ceros y polos de Go Frecuencia natural (rad/seg) 3.7251 0.14728	²² Factor de amortiguamiento δ 1 1		
-3.8873 - Ceros -3.725 -0.147	24.17i <i>Tabla 5.1</i>	24.48 25: Ceros y polos de G _C Frecuencia natural (rad/seg) 3.7251 0.14728	0.15879 Factor de amortiguamiento δ 1 1		
-3.8873 - Ceros -3.725 -0.147 Polos	24.17i <i>Tabla 5.1</i>	24.48 25: Ceros y polos de G _c Frecuencia natural (rad/seg) 3.7251 0.14728 Frecuencia natural	0.15879 Factor de amortiguamiento δ 1 1 Factor de		
-3.8873 - Ceros -3.725 -0.147 Polos	24.17i <i>Tabla 5.2</i>	24.48 25: Ceros y polos de G _C Frecuencia natural (rad/seg) 3.7251 0.14728 Frecuencia natural (rad/seg)	C.15879 Factor de amortiguamiento δ 1 1 Factor de amortiguamiento δ		
-3.8873 - Ceros -3.725 -0.147 Polos -1.6529 +	24.17i <i>Tabla 5.2</i> 51 728 4.0959i	24.48 25: Ceros y polos de G _c Frecuencia natural (rad/seg) 3.7251 0.14728 Frecuencia natural (rad/seg) 4.4169	0.15879 Factor de amortiguamiento δ 1 1 Factor de amortiguamiento δ 0.37423		

Control Robusto e Inteligente de Buques de Alta Velocidad

En la Figura 5.62 y Figura 5.63 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

Figura 5.62: Posición del Flap cuando se realiza la simulación del proceso controlado.

CRIBAV

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.63: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.64 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

Figura 5.64: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.65 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.65: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.13 se presentan los resultados del assessment.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Cuadro 5.13: Resultados del assessment.

```
exper2e4.mat
WVA Controlada 0.5000 m/s^2, WVA Sin Control 0.5466 m/s^2, Mejora 8.5 %
MSI Controlado 7.9681 %, MSI Sin Control 9.5028 %, Mejora 16.2 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 1.61 °, Cavitación media en Flap 0.63 °
                                                             *****
exper2e5.mat
WVA Controlada 0.7945 m/s^2, WVA Sin Control 0.8408 m/s^2, Mejora 5.5 \%
MSI Controlado 24.7554 %, MSI Sin Control 26.7402 %, Mejora 7.4 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg
Cavitación media en T-Foil 2.79 °, Cavitación media en Flap 0.62 °
exper3e4.mat
WVA Controlada 0.3623 m/s^2, WVA Sin Control 0.5051 m/s^2, Mejora 28.3 %
MSI Controlado 2.2047 %, MSI Sin Control 4.9204 %, Mejora 55.2 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 2.50 °, Cavitación media en Flap 4.35 °
                                                       . . . . . . . . . . . . . . . .
exper3e5.mat
WVA Controlada 1.1123 m/s^2, WVA Sin Control 1.2803 m/s^2, Mejora 13.1 %
MSI Controlado 35.5904 %, MSI Sin Control 41.4238 %, Mejora 14.1 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg
Cavitación media en T-Foil 5.23 °, Cavitación media en Flap 3.94
exper4e4.mat
MSI Controlado 3.5882 %, MSI Sin Control 7.8626 %, Mejora 54.4 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 4.16 °, Cavitación media en Flap 5.19 °
                                                         *******
exper4e5.mat
WVA Controlada 1.4833 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 14.3 %
MSI Controlado 43.7461 %, MSI Sin Control 50.4168 %, Mejora 13.2 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg
Cavitación media en T-Foil 6.40 °, Cavitación media en Flap 5.38 °
                                         Promedio sobre los diferentes casos posibles.\n
                    WVAs MejWVA MSIc MSIs MejMSI TiempoTFout CavitacionTF CavitacionFL
WVAc
      0.95
           16.61 19.64 23.48 26.74 0.50
                                                    3.78
0.80
                                                                 3.35
```

5.2.5 VELOCIDAD 30 NUDOS Y ESTADO DE LA MAR 5

En la Tabla 5.26 se muestran los resultados del proceso de sintonía: los vectores de parámetros $\theta_G y \theta_{opt} y$ los valores de la función de coste J_{G50} y J₅₀.

Tabla 5.20: Resultados del proceso de sintonia					
$\theta_{\rm G}$	θ_{opt}	J_{G50}	J_{50}		
10.893	8.9662	1.087	1.0849		
21.793	21.904				
153.97	165.71				
1.2186	3.0248				
477.83	504.06				
169.54	165.56				
2.4008	3.0719				
0.54642	1.0805				
5.674	6.111				
22.106	31.256				

Table 5 26. Desultades dela

En la Figura 5.66 se muestra el mejor valor de la función J_{G50} de cada generación.

Control Robusto e Inteligente de Buques de Alta Velocidad

Figura 5.66: Mejor valor de la función J_{G50} de cada generación.

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

 $G_{C1} = \frac{8.966s^2 + 196.4s + 1486}{s^2 + 3.025s + 504.1} \qquad G_{C1} = \frac{165.6s^2 + 50.6s + 178.9}{s^2 + 6.111s + 31.26}$

En la Tabla 5.27 y Tabla 5.28 se muestran los ceros y polos de G_{C1} y G_{C2} respectivamente.

Tabla 5.27: Ceros y polos de G_{C1}				
Ceros		Frecuencia natural	Factor de	
		(rad/seg)	amortiguamiento δ	
-10.952 +	6.7644i	12.873	0.8508	
-10.952 -	6.7644i	12.873	0.8508	

Polos		Frecuencia natural (rad/seg)	Factor de amortiguamiento δ
-1.5124 +	22.4i	22.451	0.067365
-1.5124 -	22.4i	22.451	0.067365

Tabla 5.28: Ceros y polos de G_{C2}				
Ceros	Frecuencia natural	Factor de		
	(rad/seg)	amortiguamiento δ		
-2.6667	2.6667	1		
-0.4052	0.4052	1		

Polos		Frecuencia natural (rad/seg)	Factor de amortiguamiento δ
-3.0555 +	4.6818i	5.5907	0.54654
-3.0555 -	4.6818i	5.5907	0.54654

En la Figura 5.67 y Figura 5.68 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.
CRIBAV

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.67: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.68: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.69 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.69: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.70 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.70: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.14 se presentan los resultados del assessment.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Cuadro 5.14: Resultados del assessment.

```
exper2e4.mat
WVA Controlada 0.5000 m/s^2, WVA Sin Control 0.5466 m/s^2, Mejora 8.5 %
MSI Controlado 7.9672 %, MSI Sin Control 9.5028 %,
                                                Mejora 16.2 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 1.05 °, Cavitación media en Flap 0.54 °
exper2e5.mat
WVA Controlada 0.7964 m/s^2, WVA Sin Control 0.8408 m/s^2, Mejora 5.3 %
MSI Controlado 24.8368 %, MSI Sin Control 26.7402 %, Mejora 7.1 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg
Cavitación media en T-Foil 2.81 °, Cavitación media en Flap 0.60 °
exper3e4.mat
WVA Controlada 0.3921 m/s^2, WVA Sin Control 0.5051 m/s^2, Mejora 22.4 %
MSI Controlado 2.6965 %, MSI Sin Control 4.9204 %, Mejora 45.2 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 1.86 °, Cavitación media en Flap 4.27 °
                                                        exper3e5.mat
WVA Controlada 1.0924 m/s^2, WVA Sin Control 1.2803 m/s^2, Mejora 14.7 %
MSI Controlado 34.8643 %, MSI Sin Control 41.4238 %, Mejora 15.8 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg
Cavitación media en T-Foil 5.53 °, Cavitación media en Flap 4.23
exper4e4.mat
MSI Controlado 3.8752 %,
                       MSI Sin Control 7.8626 %,
                                                Mejora 50.7 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 3.66 °, Cavitación media en Flap 5.44 °
                                                              ******
exper4e5.mat
WVA Controlada 1.4570 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 15.8 \%
MSI Controlado 42.9826 %, MSI Sin Control 50.4168 %, Mejora 14.7 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg
Cavitación media en T-Foil 6.58 º, Cavitación media en Flap 5.46 •
                                          Promedio sobre los diferentes casos posibles.\n
                                          MejWVA MSIC MSIs MejMSI TiempoTFout CavitacionTF CavitacionFL
WVAc
      WVAs
0.80
      0.95
             15.72 19.54 23.48 24.96 0.50
                                                     3.58
                                                                   3.42
```

5.2.6 VELOCIDAD 30 NUDOS Y ESTADO DE LA MAR 6

En la Tabla 5.29 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J_{50} .

Tubla 5.2). Resultatos del proceso de sintonia					
$\theta_{\rm G}$	θ_{opt}	J_{G50}	J_{50}		
222.66	222.65	1.3996	1.3983		
11.66	11.583				
35.284	34.099				
33.535	35.644				
462.29	462.66				
75.421	75.537				
1.8396	1.657				
0.78234	0.92598				
2.1564	1.9507				
9.9673	9.9831				

Tabla 5.29: Resultados del proceso de sintonía

En la Figura 5.71 se muestra el mejor valor de la función J_{G50} de cada generación.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.71: Mejor valor de la función J_{G50} *de cada generación.*

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{222.7s^2 + 2579s + 7592}{s^2 + 35.64s + 462.7} \qquad G_{C1} = \frac{75.74s^2 + 125.2s + 69.95}{s^2 + 1.951s + 9.983}$$

En la Tabla 5.30 y Tabla 5.31 se muestran los ceros y polos de G_{C1} y G_{C2} respectivamente.

Tabla 5.30: Ceros y polos de G_{CI}			
Ceros		Frecuencia natural	Factor de
		(rad/seg)	amortiguamiento δ
-5.7917 +	0.74512i	5.8395	0.99183
-5.7917 -	0.74512i	5.8395	0.99183

Polos		Frecuencia natural (rad/seg)	Factor de amortiguamiento δ
-17.822 +	12.043i	21.509	0.82856
-17.822 -	12.043i	21.509	0.82856

Tabla 5.31: Ceros y polos de G_{C2}			
Ceros		Frecuencia natural	Factor de
		(rad/seg)	amortiguamiento δ
-0.8285 +	0.48946i	0.96228	0.86097
-0.8285 -	0.48946i	0.96228	0.86097

Polos		Frecuencia natural (rad/seg)	Factor de amortiguamiento δ
-0.97534 +	3.0053i	3.1596	0.30869
-0.97534 -	3.0053i	3.1596	0.30869

En la Figura 5.72 y Figura 5.73 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.72: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.73: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.74 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.74: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.75 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.75: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.16 se presentan los resultados del assessment.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Cuadro 5.16: Resultados del assessment.

```
exper2e4.mat
WVA Controlada 0.5019 m/s^2, WVA Sin Control 0.5466 m/s^2, Mejora 8.2 %
MSI Controlado 8.0309 %, MSI Sin Control 9.5028 %,
                                               Mejora 15.5 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 0.90 °, Cavitación media en Flap 0.69 °
                                                             *****
exper2e5.mat
WVA Controlada 0.7935 m/s^2, WVA Sin Control 0.8408 m/s^2, Mejora 5.6 \%
MSI Controlado 24.7131 %, MSI Sin Control 26.7402 %, Mejora 7.6 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg
Cavitación media en T-Foil 2.44 º, Cavitación media en Flap 0.71 º
exper3e4.mat
WVA Controlada 0.3974 m/s^2, WVA Sin Control 0.5051 m/s^2, Mejora 21.3 %
MSI Controlado 2.7877 %, MSI Sin Control 4.9204 %, Mejora 43.3 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 1.57 °, Cavitación media en Flap 5.37 °
                                                       * * * * * * * * * * * * *
exper3e5.mat
WVA Controlada 1.1073 m/s^2, WVA Sin Control 1.2803 m/s^2, Mejora 13.5 %
MSI Controlado 35.4110 %, MSI Sin Control 41.4238 %, Mejora 14.5 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg
Cavitación media en T-Foil 5.22 °, Cavitación media en Flap 4.31
exper4e4.mat
MSI Controlado 4.0583 %, MSI Sin Control 7.8626 %, Mejora 48.4 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 3.48 °, Cavitación media en Flap 5.08 °
                                                            ******
exper4e5.mat
WVA Controlada 1.4764 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 14.7 %
MSI Controlado 43.5468 %, MSI Sin Control 50.4168 %, Mejora 13.6 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg
Cavitación media en T-Foil 6.20 °, Cavitación media en Flap 5.34 °
                                        Promedio sobre los diferentes casos posibles.\n
                    WVAs MejWVA MSIc MSIs MejMSI TiempoTFout CavitacionTF CavitacionFL
WVAc
            14.92 19.76 23.48 23.82 0.50
0.81
      0.95
                                                    3.30
                                                                 3.58
```

5.2.7 VELOCIDAD 40 NUDOS Y ESTADO DE LA MAR 4

En la Tabla 5.32 se muestran los resultados del proceso de sintonía: los vectores de parámetros $\theta_G y \theta_{opt} y$ los valores de la función de coste J_{G50} y J₅₀.

Tabla 5.52: Resultatos del proceso de sintonia				
$\theta_{\rm G}$	θ_{opt}	J_{G50}	J_{50}	
65.035	64.876	0.57091	0.55816	
2.0214	1.5459			
89.46	89.156			
8.6262	8.6563			
541.33	541.44			
171.67	171.73			
3.012	2.995			
4.2139	4.2366			
3.0248	2.9855			
32.592	32.061			

Tull 5 22. Durilla des del marce de sintenía

En la Figura 5.76 se muestra el mejor valor de la función J_{G50} de cada generación.

Control Robusto e Inteligente de Buques de Alta Velocidad

Figura 5.76: Mejor valor de la función J_{G50} de cada generación.

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

 $G_{C1} = \frac{41.64s^2 + 59.63s + 2897}{s^2 + 14.17s + 441.8} \qquad G_{C1} = \frac{170.3s^2 + 385.6s + 518.7}{s^2 + 2.172s + 18.47}$

En la Tabla 5.33 y Tabla 5.34 se muestran los ceros y polos de G_{C1} y G_{C2} respectivamente.

Tabla 5.33: Ceros y polos de G_{CI}			
Ceros		Frecuencia natural	Factor de
		(rad/seg)	amortiguamiento δ
-0.71604 +	8.3101i	8.3409	0.085846
-0.71604 -	8.3101i	8.3409	0.085846

Polos		Frecuencia natural (rad/seg)	Factor de amortiguamiento δ
-7.0833 +	19.788i	21.018	0.33701
-7.0833 -	19.788i	21.018	0.33701

Tabla 5.34: Ceros y polos de G_{C2}				
Ceros		Frecuencia natural (rad/seg)	Factor de amortiguamiento δ	
-1.1323 +	1.3282i	1.7453	0.64874	
-1.1323 -	1.3282i	1.7453	0.64874	

Polos		Frecuencia natural (rad/seg)	Factor de amortiguamiento δ
-1.0859 +	4.1588i	4.2982	0.25264
-1.0859 -	4.1588i	4.2982	0.25264

En la Figura 5.77 y Figura 5.78 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.77: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.78: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.79 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.79: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.80 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.80: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.16 se presentan los resultados del assessment.

Control Robusto e Inteligente de Buques de Alta Velocidad

Cuadro 5.16: Resultados del assessment.

exper2e4.mat	m/s^2, Mejora 8.2 %
WVA Controlada 0.5018 m/s^2, WVA Sin Control 0.5466	Mejora 15.5 %
MSI Controlado 8.0279 %, MSI Sin Control 9.5028 %,	didad 0.00 seg
Tiempo que el T-Foil está a menos de 50 cm de profun	en Flap 0.49 °
Cavitación media en T-Foil 1.00 °, Cavitación media	*******
exper2e5.mat	m/s^2, Mejora 4.9 %
WVA Controlada 0.7996 m/s^2, WVA Sin Control 0.8408	%, Mejora 6.6 %
MSI Controlado 24.9727 %, MSI Sin Control 26.7402	didad 1.25 seg
Tiempo que el T-Foil está a menos de 50 cm de profun	en Flap 0.56 °
Cavitación media en T-Foil 1.76 °, Cavitación media	*************
exper3e4.mat	m/s^2, Mejora 24.6 %
WVA Controlada 0.3808 m/s^2, WVA Sin Control 0.5051	Mejora 49.1 %
MSI Controlado 2.5041 %, MSI Sin Control 4.9204 %,	didad 0.00 seg
Tiempo que el T-Foil está a menos de 50 cm de profun	en Flap 4.05 °
Cavitación media en T-Foil 3.52 °, Cavitación media	*******
exper3e5.mat	m/s^2, Mejora 11.0 %
WVA Controlada 1.1393 m/s^2, WVA Sin Control 1.2803	%, Mejora 11.7 %
MSI Controlado 36.5670 %, MSI Sin Control 41.4238	didad 1.00 seg
Tiempo que el T-Foil está a menos de 50 cm de profun	en Flap 4.08 °
Cavitación media en T-Foil 5.09 °, Cavitación media	*******
exper4e4.mat	m/s^2, Mejora 31.7 %
WVA Controlada 0.5582 m/s^2, WVA Sin Control 0.8175	Mejora 57.1 %
MSI Controlado 3.3721 %, MSI Sin Control 7.8626 %,	didad 0.00 seg
Tiempo que el T-Foil está a menos de 50 cm de profun	en Flap 4.03 °
Cavitación media en T-Foil 4.55 °, Cavitación media	******
exper4e5.mat	m/s^2, Mejora 13.5 %
WVA Controlada 1.4984 m/s^2, WVA Sin Control 1.7313	%, Mejora 12.4 %
MSI Controlado 44.1805 %, MSI Sin Control 50.4168	didad 0.50 seg
Tiempo que el T-Foil está a menos de 50 cm de profun	en Flap 5.01 °
Cavitación media en T-Foil 6.21 °, Cavitación media	*******
Promedio sobre los diferentes casos posibles.\n *****	*****
WVAc WVAs MejWVA MSIc MSIs MejMSI TiempoTF 0.81 0.95 15.65 19.94 23.48 25.41 0.46	out CavitacionTF CavitacionFL 3.69 3.04

5.2.8 VELOCIDAD 40 NUDOS Y ESTADO DE LA MAR 5

En la Tabla 5.35 se muestran los resultados del proceso de sintonía: los vectores de parámetros θ_G y θ_{opt} y los valores de la función de coste J_{G50} y J_{50} .

Tabla 5.55: Resultados del proceso de sintonia					
$\theta_{ m G}$	θ_{opt}	$\mathbf{J}_{\mathrm{G50}}$	J_{50}		
125.14	123.37	1.4215	1.4161		
26.177	26.924				
42.473	42.012				
12.465	12.415				
257.33	267.14				
147.68	149.29				
1.253	1.0465				
1.7032	1.8711				
4.2467	3.6026				
17.358	17.43				

Tabla 5 35: Resultados del proceso de sintonía

En la Figura 5.81 se muestra el mejor valor de la función $J_{\rm G50}$ de cada generación.

Control Robusto e Inteligente de Buques de Alta Velocidad

Figura 5.81: Mejor valor de la función J_{G50} *de cada generación.*

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

$$G_{C1} = \frac{123.4s^2 + 3322s + 5183}{s^2 + 12.41s + 267.1} \qquad G_{C1} = \frac{149.3s^2 + 156.2s + 279.3}{s^2 + 3.603s + 17.43}$$

En la Tabla 5.36 y Tabla 5.37 se muestran los ceros y polos de G_{C1} y G_{C2} respectivamente.

Tabla 5.36: Ceros y polos de G_{C1}		
Ceros	Frecuencia natural	Factor de
	(rad/seg)	amortiguamiento δ
-25.26	25.26	1
-1.6632	1.6632	1

Polos		Frecuencia natural (rad/seg)	Factor de amortiguamiento δ
-6.2073 +	15.12i	16.344	0.37978
-6.2073 -	15.12i	16.344	0.37978

Tabla 5.3	7: (Ceros	y pol	os a	le G_{c}	2
						_

	Ce	eros	Frecuencia natura	I Factor de
			(rad/seg)	amortiguamiento δ
-0.52326	+	1.2639i	1.3679	0.38253
-0.52326	-	1.2639i	1.3679	0.38253

Polos		Frecuencia natura (rad/seg)	al Factor de amortiguamiento δ
-1.8013 +	3.7664i	4.175	0.43146
-1.8013 -	3.7664i	4.175	0.43146

En la Figura 5.82 y Figura 5.83 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.82: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.83: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.84 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.84: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.85 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.85: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.17 se presentan los resultados del assessment.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Cuadro 5.17: Resultados del assessment.

```
exper2e4.mat
WVA Controlada 0.4987 m/s^2, WVA Sin Control 0.5466 m/s^2, Mejora 8.8 %
MSI Controlado 7.9270 %, MSI Sin Control 9.5028 %,
                                                Mejora 16.6 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 0.70 °, Cavitación media en Flap 0.25 °
                                                               *****
exper2e5.mat
WVA Controlada 0.7935 m/s^2, WVA Sin Control 0.8408 m/s^2, Mejora 5.6 \%
MSI Controlado 24.7111 %, MSI Sin Control 26.7402 %, Mejora 7.6 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg
Cavitación media en T-Foil 1.93 °, Cavitación media en Flap 0.46 °
exper3e4.mat
WVA Controlada 0.4068 m/s^2, WVA Sin Control 0.5051 m/s^2, Mejora 19.5 %
MSI Controlado 2.9548 %, MSI Sin Control 4.9204 %, Mejora 39.9 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 1.44 °, Cavitación media en Flap 3.20 °
                                                      exper3e5.mat
WVA Controlada 1.1255 m/s^2, WVA Sin Control 1.2803 m/s^2, Mejora 12.1 %
MSI Controlado 36.0696 %, MSI Sin Control 41.4238 %, Mejora 12.9 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg
Cavitación media en T-Foil 4.85 °, Cavitación media en Flap 4.05
exper4e4.mat
. WVA Controlada 0.6104 m/s^2, WVA Sin Control 0.8175 m/s^2, Mejora 25.3 %
MSI Controlado 4.1679 %, MSI Sin Control 7.8626 %, Mejora 47.0 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg
Cavitación media en T-Foil 3.02 °, Cavitación media en Flap 2.97 °
                                                              ******
exper4e5.mat
WVA Controlada 1.4286 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 17.5 %
MSI Controlado 42.1443 %, MSI Sin Control 50.4168 %, Mejora 16.4 %
Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg
Cavitación media en T-Foil 6.35 °, Cavitación media en Flap 4.86 °
                                          Promedio sobre los diferentes casos posibles.\n
                    WVAs MejWVA MSIc MSIs MejMSI TiempoTFout CavitacionTF CavitacionFL
WVAc
0.81
      0.95
            14.79 19.66 23.48 23.41 0.50
                                                     3.05
                                                                   2.63
```

5.2.9 VELOCIDAD 40 NUDOS Y ESTADO DE LA MAR 6

En la Tabla 5.38 se muestran los resultados del proceso de sintonía: los vectores de parámetros $\theta_G y \theta_{opt} y$ los valores de la función de coste J_{G50} y J₅₀.

14014 5.58	. Kesullaads del proc	eso de sínic	та
$\theta_{\rm G}$	θ_{opt}	$\mathbf{J}_{\mathbf{G50}}$	J_{50}
65.747	67.634	1.7302	1.7289
28.038	27.527		
209.09	195.49		
5.0157	6.7039		
615.35	616.6		
157.81	156.32		
2.6263	2.8352		
0.54642	0.49803		
6.9011	6.5053		
43.392	44.277		

Tull 5 20. Durilla des del marce de sintenía

En la Figura 5.86 se muestra el mejor valor de la función $J_{\rm G50}$ de cada generación.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.86: Mejor valor de la función J_{G50} *de cada generación.*

Las funciones de transferencia de los controladores Gc1 y Gc2 son :

 $G_{C1} = \frac{67.63s^2 + 1862s + 13220}{s^2 + 6.704s + 616.6} \qquad G_{C1} = \frac{156.3s^2 + 443.2s + 77.85}{s^2 + 6.505s + 44.28}$

En la Tabla 5.39 y Tabla 5.40 se muestran los ceros y polos de G_{C1} y G_{C2} respectivamente.

Tabla 5.39: Ceros y polos de G_{C1}				
Ceros		Frecuencia natural	Factor de	
		(rad/seg)	amortiguamiento δ	
-13.764 +	2.4606i	13.982	0.98439	
-13.764 -	2.4606i	13.982	0.98439	

Polos	Frecuencia natural (rad/seg)	Factor de amortiguamiento δ
-3.352 + 24.604i	24.832	0.13499
-3.352 - 24.604i	24.832	0.13499

Tabla 5.40: Ceros y polos de G_{C2}			
Ceros	Frecuencia natural (rad/seg)	Factor de amortiguamiento δ	
-2.647	2.647	1	
-0.18815	0.18815	1	

Polos		Frecuencia natural (rad/seg)	Factor de amortiguamiento δ
-3.2526 +	5.8049i	6.6541	0.48882
-3.2526 -	5.8049i	6.6541	0.48882

En la Figura 5.87 y Figura 5.88 se muestra la posición del Flap y del Tfoil respectivamente cuando se realiza la simulación del proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.87: Posición del Flap cuando se realiza la simulación del proceso controlado.

Figura 5.88: Posición del Tfoil cuando se realiza la simulación del proceso controlado.

En la Figura 5.89 se muestra la serie temporal de la aceleración vertical media (línea punteada) que se obtiene al simular el proceso sin actuadores comparada con la aceleración vertical media (línea continua) que se obtiene al simular el proceso controlado.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

Figura 5.89: Serie temporal de aceleración vertical media del proceso sin actuadores (línea punteada) y serie temporal de aceleración vertical media del proceso controlado(línea continua)

En la Figura 5.90 se muestra el MSI que se obtendría al simular el proceso sin actuadores y el MSI que se obtendría al simular el proceso controlado.

Figura 5.90: MSI que se obtendría al simular el proceso sin actuadores (MSIs) y el MSI que se obtendría al simular el proceso controlado (MSIc).

En el Cuadro 5.18 se presentan los resultados del assessment.

CRIBAV —

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

Control Robusto e Inteligente de Buques de Alta Velocidad

Cuadro 5.18: Resultados del assessment.

exper2e4.mat WVA Controlada 0.5125 m/s^2, WVA Sin Control 0.5466 m/s^2, Mejora 6.2 % MSI Controlado 8.3734 %, MSI Sin Control 9.5028 %, Mejora 11.9 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 0.63 °, Cavitación media en Flap 0.62 ° ***********				
exper2e5.mat WVA Controlada 0.8077 m/s^2, WVA Sin Control 0.8408 m/s^2, Mejora 3.9 % MSI Controlado 25.3220 %, MSI Sin Control 26.7402 %, Mejora 5.3 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg Cavitación media en T-Foil 2.17 °, Cavitación media en Flap 0.71 °				
exper3e4.mat WVA Controlada 0.4317 m/s^2, WVA Sin Control 0.5051 m/s^2, Mejora 14.5 % MSI Controlado 3.4142 %, MSI Sin Control 4.9204 %, Mejora 30.6 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 1.06 °, Cavitación media en Flap 4.95 °				
exper3e5.mat WVA Controlada 1.1335 m/s^2, WVA Sin Control 1.2803 m/s^2, Mejora 11.5 % MSI Controlado 36.3570 %, MSI Sin Control 41.4238 %, Mejora 12.2 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 1.25 seg Cavitación media en T-Foil 4.65 °, Cavitación media en Flap 3.93 °				
exper4e4.mat WVA Controlada 0.6593 m/s^2, WVA Sin Control 0.8175 m/s^2, Mejora 19.4 % MSI Controlado 4.9690 %, MSI Sin Control 7.8626 %, Mejora 36.8 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.00 seg Cavitación media en T-Foil 2.12 °, Cavitación media en Flap 4.70 °				
exper4e5.mat WVA Controlada 1.4728 m/s^2, WVA Sin Control 1.7313 m/s^2, Mejora 14.9 % MSI Controlado 43.4422 %, MSI Sin Control 50.4168 %, Mejora 13.8 % Tiempo que el T-Foil está a menos de 50 cm de profundidad 0.50 seg Cavitación media en T-Foil 5.40 °, Cavitación media en Flap 5.07 °				
Promedio sobre los diferentes casos posibles.\n				
WVAc WVAs MejWVA MSIc MejMSI TiempoTFout CavitacionTF CavitacionFL 0.84 0.95 11.75 20.31 23.48 18.44 0.50 2.67 3.33				

Control Robusto e Inteligente de Buques de Alta Velocidad

6. CONCLUSIONES

En este informe se ha presentado el diseño de un control de posición implementado con redes de primer orden y el diseño de un control de posición implementado con redes de segundo orden, para las velocidades de 20, 30 y 40 nudos y estado de la mar 4, 5 y 6, sobre heave y pitch en un buque de alta velocidad. Con estos diseños se ha conseguido una disminución de las aceleraciones verticales que sufre el buque y por consiguiente del MSI (motion sickness incidence o porcentaje de personas que vomitan dentro de las dos horas).

Los parámetros obtenidos para las redes de primer orden (ver Tabla 5.1) y los parámetros obtenidos para las redes de segundo orden (ver Tabla 5.12), son distintos para cada pareja de valores del estado de la mar y de la velocidad del buque, de esta forma se tiene un esquema de ganancias programadas.

En la Tabla 5.2 y en la Tabla 5.13 se puede observar que la mejora en el MSI al utilizar el diseño con redes de primer y redes de segundo orden respectivamente presenta las siguientes características:

- 1. Fijada una velocidad el porcentaje de mejora aumenta conforme disminuye el estado de la mar.
- 2. Fijado un estado de la mar el porcentaje de mejora aumenta conforme aumenta la velocidad del buque.

Estos resultados están de acuerdo con lo esperado teóricamente ya que la fuerza de sustentación de los actuadores depende cuadráticamente de la velocidad. Por lo tanto al aumentar la velocidad mayores son las fuerzas y momentos que ejercen los actuadores en el plano vertical opuestas a las ejercidas por el oleaje, que a su vez genera unas fuerzas y momentos en el plano vertical más pequeños conforme disminuye el estado de la mar. Es decir, cuanto menor es el estado de la mar menores son las aceleraciones verticales que se inducen en el plano vertical causantes del mareo y la acción de los actuadores es más efectiva al tener que compensar unas fuerzas y momentos inducidos por el oleaje menores.

De acuerdo con las características descritas el mayor porcentaje de mejora en el MSI se obtiene para V=40 nudos y SSN=4 y es 48.4 % para la redes de primer orden y 52.9 % para las redes de segundo orden. El menor porcentaje de mejora en el MSI se obtiene para V=20 nudos y SSN=6 y es 3.4 % para las redes de primer orden y 3.6 % para las redes de segundo orden.

Comparando la Tabla 5.13 con la Tabla 5.2 se puede observar que las mejoras en el MSI utilizando el diseño con redes de segundo orden son superiores a las mejoras en el MSI utilizando el diseño con redes de primer orden. Este incremento en la mejora del MSI depende de la velocidad y del estado de la mar, así por ejemplo para V=20 nudos y SSN=6, el incremento es del 0.1 %, mientras que para V=40 nudos y SSN=4 el incremento es del 4.6 %. Este incremento en la mejora del MSI, era esperable ya que al utilizar la red de segundo orden se dispone de cinco parámetros ajustables frente a los tres parámetros de la red de primer orden.

Pese a utilizar una red de desacoplo sigue existiendo un acoplo no despreciable entre las variables controladas, esto es debido a que la red se diseño a partir del sistema linealizado que es una buena aproximación siempre que los actuadores no saturen. Pese a no ser una red de desacoplo óptima con su utilización se consigue mayores reducciones en el valor de J y en el del MSI que si se prescinde de ella.

De los resultados del assessment que se muestran en el cuadro 5.16, se pone de manifiesto la viabilidad de utilizar el diseño con redes de segundo orden obtenido para V=40 y estado de la mar 4 para todas las condiciones posibles de estado de la mar y velocidad del buque, ya que en promedio sobre todos los casos posibles se consigue una mejora en el MSI del 25.41 %.

Respecto al método de sintonía mixto utilizado, comentar lo imprescindible de utilizar como primer paso el algoritmo genético con el que se obtiene una solución próxima al óptimo global. La utilización en un paso posterior de un algoritmo de optimización no lineal clásico produce una ligera mejora de la solución obtenida con genéticos.

Control Robusto e Inteligente de Buques de Alta Velocidad

Tras observar la figura del mejor valor de la función J_{G50} en cada generación para las distintos casos de velocidad y estado de la mar en el diseño de las redes de primer orden se deduce que el número de generaciones fijado a 300 es excesivo ya el algoritmo genético converge alrededor de 150. Por esta razón al generar las redes de segundo orden se fijó el número de generaciones a 150.

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

Control Robusto e Inteligente de Buques de Alta Velocidad

APENDICE A: MODELOS LINEALES DE LA DINAMICA VERTICAL DEL BUQUE DE ALTA VELOCIDAD TF-120.

A.1 VELOCIDAD 20 NUDOS.

MODELO G_{1H}

La ganancia es $K_1=0.91\cdot 10^4$.

MODELO G_{2H}

MODELO G_{1P}

La ganancia $K_2 = 1.27 \cdot 10^{-6}$.

MODELO G_{2P}

Control Robusto e Inteligente de Buques de Alta Velocidad

A.2 VELOCIDAD 30 NUDOS.

MODELO G_{1H}

La ganancia es $K_1=1.72 \cdot 10^4$.

MODELO G_{2H}

MODELO G_{1P}

La ganancia $K_2 = 1.94 \cdot 10^{-6}$.

MODELO G_{2P}

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

CRIBAV -

Control Robusto e Inteligente de Buques de Alta Velocidad

A.3 VELOCIDAD 40 NUDOS.

MODELO G_{1H}

La ganancia es $K_1 = 2.2 \cdot 10^4$.

MODELO G_{2H}

MODELO G_{1P}

La ganancia $K_2 = 2.33 \cdot 10^{-6}$.

MODELO G_{2P}

Control Robusto e Inteligente de Buques de Alta Velocidad

APENDICE B: MODELOS DE LA RED DE DESACOPLO PARA LAS DIFERENTES VELOCIDADES.

B.1 VELOCIDAD 20 NUDOS.

MODELO W₁₂

MODELO W₂₁

B.2 VELOCIDAD 30 NUDOS.

MODELO W₁₂

 $w_{12} = \frac{0.9599 \text{ s}^5 + 106.8 \text{ s}^4 + 1100 \text{ s}^3 + 1559 \text{ s}^2 + 2963 \text{ s} + 1073}{\text{s}^5 + 111.3 \text{ s}^4 + 1124 \text{ s}^3 + 1774 \text{ s}^2 + 3053 \text{ s} + 1117}$

MODELO W₂₁

 $w_{21} = \begin{array}{c} -0.7421 \text{ s}^{-4} - 87.6 \text{ s}^{-3} - 773.3 \text{ s}^{-2} - 617.4 \text{ s} - 2109 \\ \mathbf{w}_{21} = \\ \mathbf{s}^{-4} + 110.5 \text{ s}^{-3} + 1053 \text{ s}^{-2} + 768.9 \text{ s} + 2842 \end{array}$

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

CRIBAV -

Control Robusto e Inteligente de Buques de Alta Velocidad

B.3 VELOCIDAD 40 NUDOS.

MODELO W₁₂

MODELO W₂₁

Control Robusto e Inteligente de Buques de Alta Velocidad

APENDICE C: ALGORITMO GENETICO UTILIZADO

C.1 CARACTERISTICAS GENERALES

El algoritmo genético utilizado está basado en el propuesto en [9], su esquema se muestra en la Figura C.1.

Figura C.1: Esquema del algoritmo genético utilizado.

El tamaño de la población POPSIZE se configuró a 15 individuos, el número máximo de generaciones MAXGENS se estableció en 300. La probabilidad de cruce PXOVER se fijó en 0.8 y la probabilidad de mutación PMUT se fijó en 0.15.

En el caso de la sintonía de las redes de primer orden cada individuo consta de 6 genes (NVARS=6), en el caso de la red de segundo orden cada individuo consta de 10 genes (NVARS=10). En ambos casos todos los genes son números reales comprendidos dentro de los rangos especificados en (4.7) y (4.8) respectivamente.

De acuerdo con el esquema de la Figura C.1, el primer paso del algoritmo genético es generar de forma aleatoria una población inicial de individuos e inicializar el contador de generaciones generacion=0. A continuación se evalua cada individuo sobre la función de coste (4.9), se identifica para la próxima generación al individuo que presente el mayor valor de la función de coste de la generación actual.

Se entra en un bucle de tipo while donde el algoritmo se mantendrá mientras el contador de generaciones sea inferior a MAXGENS. Dentro de este bucle se incrementa el contador de generaciones, a continuación se seleccionan individuos para la próxima generación utilizando la técnica del "Tiro de una ruleta". Se procede entonces a aplicar la operación de cruce en un sólo punto entre parejas de individuos de esta nueva generación , el punto de cruce se elige aleatoriamente. A continuación se procede a aplicar el operador de mutación. Una vez terminada la aplicación de este último operador se realiza la evaluación de la población actual y se aplica la técnica de elitismo, que consiste en reemplazar el peor individuo de la población actual por el mejor individuo de la población anterior, se volvería entonces al comienzo del bucle. Cuando se sale de este bucle el algoritmo llega a su fin y nos devuelve el mejor individuo encontrado a lo largo de las MAXGENS generaciones, así como el valor de la función de coste que produce dicho individuo.

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

C.2 FUNCIONES MATLAB IMPLEMENTADAS.

Las funciones Matlab que se escribieron para implementar el algoritmo genético son simplemente una adaptación de las funciones programadas en lenguaje C propuestas en [9]. En la Tabla C.1 se muestra el nombre de las funciones Matlab implementadas y las operaciones que realizan.

Nombre función MATLAB	Operaciones que realiza
ag.m	Es la función principal sobre la que se construye todo
	el algoritmo genético.
inicializar.m	Genera de forma aleatoria una población inicial de
	POPSIZE individuos con NVARS genes cada uno.
randval.m	Genera un valor aleatorio dentro de los límites
	especificados
evaluacion.m	Evalúa cada individuo de una generación sobre la
	función de coste elegida.
fcoste_ag.m	Función donde está implementada la función de coste.
keep_the_best.m	Esta función identifica al miembro de la población con
	un mejor valor de la función de coste.
seleccionar.m	Selecciona individuos para la próxima generación
	utilizando la técnica del "Tiro de una ruleta"
cruce.m	Selección de cromosomas para ser cruzados
Xover.m	Implementa el operador de cruce en un sólo punto.
mutación.m	Implementa el operador de mutación aleatoria uniforme
elitismo.m	Reemplaza el peor individuo de la generación actual
	por el mejor individuo de la generación anterior.
dib_gen	Representa gráficamente el valor de la función de coste
	del mejor individuo de cada generación.

Tabla C.1: Funciones Matlab implementadas

En los siguientes subapartados se muestra el código de las funciones de la Tabla C.1.

C.2.1 AG.M

```
%AG ALGORITMO GENETICO para números reales basado en el apéndice A del libro de Michalewicz.
 ¡¡ATENCION!! este código es válido únicamente para problemas de maximización donde
°
% la función de coste toma valores positivos únicamente.
function [f,x,best_value,generacion]=ag(PXOVER,PMUT,upper,lower)
% Parámetros del algoritmo:
% POPSIZE tamaño de la población.
% MAXGENS máximo número de generaciones.
% NVARS número de variables de la función de coste
% PXOVER probabilidad de cruce.
% PMUTATION probabilidad de mutación.
% Otros variables del algoritmo:
% generación número de generación actual.
% cor_best
              mejor individuo
% gene
% fitness
% gene
              vector de parametros.
              valor de la función de coste (fitness)
% upper
              vector de cota superior para los parametros
              vector de cota inferior para los parametros
% lower
              valor de fitness relativo
% rfitness
% cfitness
              valor de fitness acumulado
% poblacion
               matriz de tamaño (POPSIZE+1) x NVARS que contiene a todos los genes de una
población
<sup>-</sup> newpoblacion nueva población que sustituye a la vieja.
```

```
POPSIZE=15;
MAXGENS=300;
NVARS=length(upper);
total=POPSIZE*(MAXGENS+1);
cont=0;
generacion=0;
% inicialización de la población:
poblacion=inicializar(POPSIZE,NVARS,lower,upper);
% Evaluación de la población:
[poblacion,cont]=evaluacion(poblacion,NVARS,POPSIZE,total,cont);
% mantener el mejor
poblacion=keep_the_best(poblacion, POPSIZE, NVARS);
% Producción de las siguientes generaciones:
while(generacion <MAXGENS)</pre>
   generacion=generacion+1;
   poblacion=seleccionar(poblacion,POPSIZE,NVARS);
   poblacion=cruce(PXOVER,POPSIZE,NVARS,poblacion);
   poblacion=mutacion(poblacion, POPSIZE, NVARS, PMUT, lower, upper);
[best_value(generacion,1), avg(generacion,1), stddev(generacion,1)]=report(generacion,poblacion,
POPSIZE);
  [poblacion,cont]=evaluacion(poblacion,NVARS,POPSIZE,total,cont);
   poblacion=elitismo(poblacion,POPSIZE);
end
fprintf('
                        ;;;;;;Simulacion Completada!!!!!!!\n\n')
fprintf('Mejor cromosoma:\n')
poblacion(POPSIZE+1,4:NVARS+3)
fprintf('Valor del fitness: %g \n',poblacion(POPSIZE+1,1))
figure(1)
plot(best_value(1:generacion))
title('Mejor fitness de cada generacion')
xlabel('Generacion')
ylabel('Fitness máximo')
figure(2)
plot(1:generacion,avg(1:generacion),'b',1:generacion,avg(1:generacion)+stddev(1:generacion),'r
:',1:generacion,avg(1:generacion)-stddev(1:generacion),'r:')
title('valor medio del fitness de cada generacion')
xlabel('Generacion')
ylabel('Fitness medio')
x=poblacion(POPSIZE+1,4:NVARS+3);
f=poblacion(POPSIZE+1,1);
```

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

C.2.2 INICIALIZAR.M

function poblacion=inicializar(POPSIZE,NVARS,lower,upper)
% INICIALIZAR

```
for j=1:POPSIZE,
   poblacion(j,1)=0; %fitness
   poblacion(j,2)=0; %rfitness
   poblacion(j,3)=0; %cfitness
   for i=4:3+NVARS
      s=i-3;
      poblacion(j,i)=randval(lower(1,s),upper(1,s));
   end
```

end

C.2.3 RANDVAL.M

% RANDVAL genera un valor aleatorio dentro de las fronteras indicadas function val=randval(low,high) val=rand(1)*(high-low)+low;

C.2.4 EVALUACION.M

function [poblacion,cont]=evaluacion(poblacion,NVARS,POPSIZE,total,cont)

```
for men=1:POPSIZE
    cont=cont+1;
    fprintf('Numero de evaluaciones restantes: %g\n ',total-cont);
    fprintf('Tiempo que falta %g horas\n',((total-cont)*28)/3600);
    x=poblacion(men,4:NVARS+3);
    f=fcoste_ag(x);
    poblacion(men,1)=f;
```

end

C.2.5 FCOSTE_AG.M

```
% COSTE ( para la red de primer orden)
% Esta función implementa la función de aceleración media a 40 metros del C.G
% Requiere como entrada el vector de parametros x=[Kc1,zc1,pc1,Kc2,zc2,pc2]
% Devuelve como salida el valor f.
2
% J.M. Diaz
2
% julio-2000
function f=fcoste_ag(x)
% Funciones de Transferencia de los controladores PD1 y PD2
Kcl=x(1);
zcl=x(2);
pc1=x(3);
Kc2=x(4);
zc2=x(5);
pc2=x(6);
nC1=Kc1*[1 zc1];
assignin('base','numC1',nC1)
dC1=[1 pc1];
assignin('base','denCl',dCl)
Gcl=tf(nCl,dCl);
nC2=Kc2*[1 zc2];
assignin('base','numC2',nC2)
dC2=[1 pc2];
assignin('base','denC2',dC2)
Gc2=tf(nC2,dC2);
sim('entorno');%Busca variables en el espacio de trabajo
WVAc=5-sum(abs(WVA(:,2)))/length(WVA(:,2));
```

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

C.2.6 KEEP_THE_BEST.M

```
% KEEP_THE_BEST Esta funcion identifica al miembro de la población con un mejor fitness.
% Ademas que la ultima fila de poblacion mantiene una copia del mejor
% individuo
%
```

function poblacion=keep_the_best(poblacion,POPSIZE,NVARS)

```
% Busqueda del mejor miembro
[maximo,pos_best]=max(poblacion(:,1));
```

%Copia de los genes del mejor miembro a la última fila de la población: poblacion(POPSIZE+1,:)=poblacion(pos_best,:);

C.2.7 SELECCIONAR.M

```
% SELECCIONAR
                    Funcion de seleccion proporcional estandar para problemas de maximización
             incorporando modelos elitistas, para asegurar que el mejor miembro sobrevive
2
function
         newpoblacion=seleccionar(poblacion, POPSIZE, NVARS)
sum=0;
% calculo del fitness total de la poblacion
for men=1:POPSIZE
   sum=sum+poblacion(men,1);
end
%Calculo del fitness relativo
for men=1:POPSIZE
  poblacion(men,2)=poblacion(men,1)./sum;
end
%Calculo del fitness acumulado.
poblacion(1,3)=poblacion(1,2);
for men=2:POPSIZE
   poblacion(men,3)=poblacion(men-1,3)+poblacion(men,2);
end
% Finalmente selecciona los supervivientes utilizando el fitness acumulado.
for i=1:POPSIZE,
   p(i,1)=rand(1); %Generación de un número aleatorio
   if p(i,1)<poblacion(1,3)</pre>
```

```
newpoblacion(i,:)=poblacion(1,:);
else
  for j=1:POPSIZE-1
      if (p(i,1)>=poblacion(j,3)& p(i,1)<poblacion(j+1,3))
            newpoblacion(i,:)=poblacion(j+1,:);
      end
  end
end
```

end

newpoblacion(POPSIZE+1,:)=poblacion(POPSIZE+1,:);

C.2.8 CRUCE.M

```
%CRUCE
           Seleccion de cromosomas para ser cruzados. Implementa el cruce en un único
           punto.
function poblacion=cruce(PXOVER,POPSIZE,NVARS,poblacion)
first=0; %
           cuenta del número de miembros seleccionados.
for mem=1:POPSIZE,
   x=rand(1); %Generacion de un número aleatorio entre [0,1]
   if (x<PXOVER)
      first=first+1;
      if mod(first,2)==0
         [poblacion(one,4:3+NVARS),poblacion(mem,4:3+NVARS)]=Xover(one,mem,poblacion,NVARS);
      else
         one=mem;
      end
   end
```

```
end
```

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

C.2.9 XOVER.M

poblacion(two,4:3+NVARS)=hijoB;

cromosomaA=poblacion(one,4:3+NVARS); cromosomaB=poblacion(two,4:3+NVARS);

C.2.10 MUTACION.M

```
%MUTACION mutacion aleatoria uniforme. Una variable seleccionada aleatoriamente
% es seleccionada para ser sustituida por un valor aleatorio comprendido
% entre su valor mínimo y su valor máximo.
function poblacion=mutacion(poblacion,POPSIZE,NVARS,PMUT,lower,upper)
first=0;
for i=1:POPSIZE
for j=4:3+NVARS
    x=rand(1); %Generacion de un número aleatorio
    if (x<PMUT)
        first=first+1;
        poblacion(i,j)=randval(lower(1,j-3),upper(1,j-3));
    end
end
```

```
end
```

C.2.11 ELITISMO.M

```
% ELITISMO
                 esta función almacena el mejor miembro de la generación anterior en la fila
                 POPSIZE+1. Si el mejor miembro de la actual genracion es peor que el mejor
% miembro de la anterior, entonces este último reemplazará al peor miembro de la poblacion.
% actual.
function poblacion=elitismo(poblacion,POPSIZE)
% Variables que se utilizan
% best mejor valor de fitness
% worst peor valor de fitness
% best_mem posicion del mejor valor de fitness
% worst_mem posicion del peor valor de fitness
[best,best_mem]=max(poblacion(1:POPSIZE,1));
[worst,worst_mem]=min(poblacion(1:POPSIZE,1));
if (best>=poblacion(POPSIZE+1,1))
   poblacion(POPSIZE+1,:)=poblacion(best_mem,:);% Copiando el cromosoma.
else
   poblacion(worst_mem,:)=poblacion(POPSIZE+1,:);
end
C.2.2 DIB GEN.M
```

```
figure(1)
plot(5-best_value(1:generacion))
title('Mejor fitness de cada generacion')
xlabel('Generacion')
ylabel('Función de coste')
grid
```

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

APENDICE D: FUNCIONES MATLAB UTILIZADAS

D.1 METODO DE SINTONIA

Para comenzar la sintonía de los controladores se debe introducir en el espacio de trabajo de MATLAB, un par de valores para la velocidad del buque $\forall y$ para el estado de la mar ssn. A continuación se debe introducir los vectores que contengan los extremos inferiores lower y los extremos superiores upper del rango de valores de los parámetros de los controladores, de acuerdo con las ecuaciones (4.7) y (4.8). Con estos datos se está en disposición de correr la función **preparar.m** que configura las variables necesarias para poder correr las simulaciones de los archivos Simulink **entorno.mdl** y **barco.mdl**, entre ellas :

- Selecciona las series temporales de la altura de ola almacenadas en los ficheros de datos *experXeY.mat*, donde X hace referencia a la velocidad y puede tomar los valores 2 (20 nudos), 3(30 nudos) o 4(40 nudos) y donde Y hace referencia al estado de la mar 4, 5 o 6.
- Selecciona las funciones de transferencia de la dinámica vertical del buque que se encuentran almacenadas en los ficheros mod20.mat, mod30.mat y mod40.mat.
- Selecciona las funciones de transferencia del modelo funciones de transferencia del modelo linealizado de los actuadores para control en posición, necesarios para el cálculo de la red de desacoplo y que se encuentran almacenadas en los ficheros mod_act_p20.mat, mod_act_p30.mat y mod_act_p40.mat

La función sistema.m realiza el calculo de las funciones de transferencia w_{12} y w_{21} de la red de desacoplo.

Una vez se tienen todas las variables necesarias se ejecuta el algoritmo genético (ver apéndice C) **ag.m**. Cuando éste finaliza se ejecuta la función **sintonizando.m** que configura los parámetros de la función de optimización **fmincon.m**, que pertenece a la toolbox de Optimización de MATLAB [10], y que minimiza la función de coste **fcoste_mc.m**, devolviendo el vector de parámetros óptimo.

En los siguientes subapartados se muestra el código de las funciones anteriores

D.1.1 PREPARAR.M

```
% PREPARAR J.M. Diaz (junio 2000)
 Este programa en MATLAB configura los parametros necesarios para poder correr las
2
% simulaciones del archivos Simulink entorno.mdl y barco.mdl.
w=what;camino=[w.path,'\Datos'];addpath(camino);
close all
if V==20 & ssn==4
   load mod20
   load exper2e4
   load mod_act_p20
elseif V==30 & ssn==4
   load mod30
   load exper3e4
   load mod_act_p30
elseif V==40 & ssn==4
   load mod40
   load exper4e4
   load mod_act_p40
elseif V==20 & ssn==5
   load mod20
   load exper2e5
   load mod_act_p20
elseif V==30 & ssn==5
   load mod30
   load exper3e5
   load mod_act_p30
elseif V==40 & ssn==5
   load mod40
```

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

CRIBAV •

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

```
load exper4e5
   load mod_act_p40
elseif V==20 & ssn==6
   load mod20
   load exper2e6
   load mod_act_p20
elseif V==30 & ssn==6
   load mod30
   load exper3e6
   load mod_act_p30
elseif V==40 & ssn==6
   load mod40
   load exper4e6
   load mod_act_p40
end
% Fichero que contiene los parámetros de los actuadores.
load actval
L_{S}=201;
tfin=tola(Ls);%tfin=50
tout=(0:0.25:tfin)';
%Modelos lineales
sistema
D.1.2 SISTEMA.M
% Este programa MATLAB genera las funciones de transferencia del proceso:
% Barco+Actuadores lineales.
% G11, G12, G13, G21, G22, G23
% Ademas devuelve la matriz RGA y la red de desacoplo
% Para poder ejecutarse primero se debe de ejecutar el archivo preparar.m
% J.M. Diaz (junio 2000)
G1H=o2fh;
G1P=o2mp;
G2H=fh2h;
G2P=mp2p;
K1=1.72*10^4;
K2=1.94*10^6;
G1He=G1H*K1;
G2He=G2H*(1/K1);
Gcorr=tf([100],[1 100]);
G2He=series(G2He,Gcorr);
G1Pe=G1P*K2;
G2Pe=G2P*(1/K2);
G2Pe=series(G2Pe,Gcorr);
%Nomenclatura utilizada:
G3=Fc2Fh;G4=TFc2Fh;G5=He2Fh;G6=Pi2Fh;
G7=Fc2Mp;G8=TFc2Mp;G9=He2Mp;G10=Pi2Mp;
A=G5-(1/G2He); B=G10-(1/G2Pe); den=(G9*G6-A*B);
%Funciones de transferencia del sistema global:
%h=G11*f+G12*t+G13*w
%p=G21*f+G22*t+G23*w
G13=(B*G1He-G6*G1Pe)/den; G11=(B*G3-G6*G7)/den; G12=(B*G4-G6*G8)/den;
G23=(A*G1Pe-G9*G1He)/den; G21=(A*G7-G9*G3)/den; G22=(A*G8-G9*G4)/den;
%Cancelación de polos y ceros:
G11=minreal(G11);G12=minreal(G12);G13=minreal(G13);
G21=minreal(G21);G22=minreal(G22);G23=minreal(G23);
%[SSGM,RGA]=cal_rga(G11,G12,G21,G22);
%Red de desacoplo W(s)
```

w11=1;

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

```
w12=minreal(-G12/G11);
w22=1;
w21=minreal(-G21/G22);
```

% SISTEMA G(s)W(s)

```
GW11=G11+G12*w21; GW12=G11*w12+G12;
GW21=G21+G22*w21; GW22=G21*w12+G22;
```

%[SSGM,RGA]=cal_rga(GW11,GW12,GW21,GW22);

D.1.3 SINTONIZANDO.M

% Programa en MATLAB para configurar los parametros necesarios de la funcion de % optimización NO LINEAL FMINCON.m

```
% J.M. Diaz (julio 2000)
%Intervalos de busqueda para los parámetros
LB=lower';
UB=upper';
%definicion de las restricciones
Al=[-1 1 0 0 0 0 0 0 0 0 0 0]';
A2=[0 0 -1 1 0 0 0 0 0 0 0 0]';
A3=[0 0 0 0 -1 1 0 0 0 0 0 0]';
A4=[0 0 0 0 0 0 -1 1 0 0 0 0]';
A5=[0 0 0 0 0 0 0 0 0 -1 1 0 0]';
A6=[0 0 0 0 0 0 0 0 0 0 0 -1 1]';
A=[A1,A2,A3,A4,A5,A6];
b=[-LB(1) UB(1) -LB(2) UB(2) -LB(3) UB(3) -LB(4) UB(4) -LB(5) UB(5) -LB(6) UB(6)]';
%x0=[161.87, 9.4197, 54.193, 150.2, 0.40535, 8.6156]';
%Funcion de calculo del problema de optimización
options=optimset('Display','iter');
t1=clock;
[x,fval,exitflag,output]=fmincon('fcoste_mc',x0,A,b,[],[],LB,UB,[],options)
f=fcoste_mc(x)
t2=clock;
tt1=etime(t1,t0)
```

D.1.4 FCOSTE_MC.M

tt2=etime(t2,t1)

```
% FCOSTE_MC ( para la red de primer orden)
% Esta función implementa la función de aceleración media a 40 metros del C.G
% Requiere como entrada el vector de parametros x=[Kcl,zcl,pcl,Kc2,zc2,pc2]
% Devuelve como salida el valor f.
2
% J.M. Diaz
% julio-2000
function f=fcoste_mc(x)
% Funciones de Transferencia de los controladores REDES DE PRIMER ORDEN
Kc1 = x(1);
zc1=x(2);
pc1=x(3);
Kc2=x(4);
zc2=x(5)
pc2=x(6);
nCl=Kcl*[1 zcl];
dC1=[1 pc1];
Gc1=tf(nC1,dC1);
assignin('base','numCl',nCl)
assignin('base','denCl',dCl)
nC2=Kc2*[1 zc2];
dC2=[1 pc2];
Gc2=tf(nC2,dC2);
assignin('base','numC2',nC2)
assignin('base','denC2',dC2)
x'
```

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

CRIBAV -

Control Robusto e Inteligente de Buques de Alta Velocidad

```
t0=clock;
sim('entorno');%Busca variables en el espacio de trabajo
WVAc=sum(abs(WVA(:,2)))/length(WVA(:,2));
t1=clock;
tt=etime(t1,t0)
```

f=WVAc save temp2 x f
CRIBAV •

Control Robusto e Inteligente de Buques de Alta Velocidad

D.2 MODELOS SIMULINK

Tanto el algoritmo genético como el algoritmo de optimización no lineal requieren en cada una de sus iteraciones evaluar las funciones de coste (4.9) y (4.5), respectivamente, un determinado número de veces. Cada evaluación requiere ejecutar la simulación de un modelo Simulink¹, se dispone de dos versiones :

- **barco.mdl** entorno Simulink que implementa el proceso, la red de desacoplo y los controladores y que considera los efectos de cavitación de los actuadores y la posibilidad de que el T-foil sobresalga por encima del agua. Se utiliza en las validación de los modelos de controladores obtenidos
- **entorno.mdl** es una simplificación del modelo anterior y desprecia los efectos de cavitación y la posibilidad que el T-foil sobresalga por encima del agua. Se utiliza en la sintonía de los controladores ya que requiere de un tiempo de simulación menor que **barco.mdl**.

En la Figura D.1 se muestra el esquema barco.mdl

Figura D.1: Esquema Simulink barco.mdl

Este esquema consta de tres bloques :

- 1. El bloque ship que implementa la dinámica vertical del buque.
- 2. El bloque Actuators que implementa los actuadores no lineales.
- 3. El bloque Controller que implementa la red de desacoplo y los controladores G_{C1} y G_{C2}
- 4. El bloque Displayer que permite visualizar diferentes señales..

En la Figura D.2 se muestra el contenido del bloque Controller.

¹ Este entorno Simulink fue desarrollado en la Universidad Complutense de Madrid por Segundo Esteban, dentro del proyecto CRIBAV.

CRIBAV •

Control Robusto e Inteligente de Buques de Alta Velocidad

D.3 VALIDACION DE LOS MODELOS

Para validar los controladores obtenidos se utilizan las siguientes funciones:

- propiedades.m. Esta función requiere que se haya corrido previamente la función preparar.m y que exista en el espacio de trabajo el vector de parámetros de los controladores. Esta función corre una simulación del entorno barco.mdl para un par de condiciones de velocidad del buque y velocidad, utiliza todas las muestras disponibles, cuando termina llama a las funciones result.m y grafos.m. Además almacena en el archivo control.mat los valores de los parámetros de los controladores para que pueda ser utilizado por asm.m
- **result.m**.² Con el valor de la aceleración vertical WVA obtenido en la simulación de **barco.mdl**, calcula la mejora que se produce en la aceleración vertical y en el MSI como consecuencia de utilizar el controlador que se está validando. También indica Tiempo que el T-Foil está a menos de 50 cm de profundidad, la cavitación media en el T-Foil y la cavitación media en el Flap.
- grafos.m. Esta genera las gráficas de aceleración vertical media y del MSI con y sin control, de la posición del Flap y de la posición del T-Foil. Indicar que en el calculo de la gráfica del MSI utiliza la función cal_msi.m.
- **asm.m**³. Para ejecutarse se debe haber ejecutado previamente **propiedades.m**. Esta función implementa el assessment de los controladores que se estén validando. Corre la simulación de **barco.mdl** para las siguientes pares de condiciones de velocidad del buque y estado de la mar: (20,4), (20,5), (30,4), (30,5), (40,4) y (40,5). El tiempo de simulación está configurado en 50 segundos. Esta función requiere utilizar la función **result.m**.

En los siguientes subapartados se muestra el código de las funciones anteriores

² Función programada por Segundo Esteban.

³ Función programada por Segundo Esteban.

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

CRIBAV •

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

D.3.1 PROPIEDADES.M

close all preparar Kc1=x(1); zc1=x(2); pc1=x(3); Kc2=x(4);zc2=x(5); pc2=x(6); nC1=Kc1*[1 zc1]; dC1=[1 pc1]; Gc1=tf(nC1,dC1); assignin('base','numCl',nCl)
assignin('base','denCl',dCl) nC2=Kc2*[1 zc2]; dC2=[1 pc2]; Gc2=tf(nC2,dC2); assignin('base','numC2',nC2)
assignin('base','denC2',dC2)
save control numC1 denC1 numC2 denC2 save control_bench numC1 denC1 numC2 denC2 V ssn Ls=length(ola); tfin=tola(Ls) %tfin=56 tout=(0:0.25:tfin)'; sim('Barco');%Busca variables en el espacio de trabajo Resul grafos

D.3.2 RESULT.M

```
WVAc=sum(abs(WVA(:,2)))/length(WVA(:,2));
WVAs=sum(abs(WVA(:,1)))/length(WVA(:,1));
Vm=V*0.5145;
we=wo+Vm*wo^2/9.8;%wo+Vb/landa_o
m=-0.819+2.32*(log10(we)).^2;
I=(-log10(WVAc/9.8)+m)/0.4/sqrt(2);
msi=[];
for i=1:size(I,2),
   if I(i)>=0,
     msi=[msi,0.5-0.5*abs(erf(I(i)))];
   else
     msi=[msi,0.5+0.5*abs(erf(I(i)))];
   end
end
MSIc=msi*100;
m=-0.819+2.32*(log10(we)).^2;
I=(-log10(WVAs/9.8)+m)/0.4/sqrt(2);
msi=[];
for i=1:size(I,2),
   if I(i)>=0,
     msi=[msi,0.5-0.5*abs(erf(I(i)))];
   else
     msi=[msi,0.5+0.5*abs(erf(I(i)))];
   end
end
MSIs=msi*100;
MejWVA=(WVAs-WVAc)/WVAs*100;
MejMSI=(MSIs-MSIc)/MSIs*100;
TiempoTFout=sum(STFout>0)/4;
                             %Tiempo que está fuera del agua
CavitacionTF=mean(STFcav);
                             %Media de la cavitación TFoil
                            %Media de la cavitación Flap
CavitacionFL=mean(SFLcav);
****
                                                          **********************
disp(nombre);
disp(sprintf('WVA Controlada %1.4f m/s^2, WVA Sin Control %1.4f m/s^2, Mejora %3.1f
%%',WVAc,WVAs,MejWVA));
disp(sprintf('MSI Controlado %1.4f %%,
                                              MSI Sin Control
                                                                %1.4f %%,
                                                                              Mejora %3.1f
%%',MSIc,MSIs,MejMSI));
disp(sprintf('Tiempo
                     que el T-Foil está a menos
                                                       de
                                                           50
                                                                cm de profundidad
                                                                                      %4.2f
seg',TiempoTFout));
```

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

CRIBAV •

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

disp(sprintf('Cavitación media en T-Foil %4.2f °, Cavitación media en Flap %4.2f °',CavitacionTF,CavitacionFL));

D.3.3 GRAFOS.M

```
%Representación gráfica
```

%Aceleracion vertical media MejWVA=(WVAs-WVAc)/WVAs*100; MejWVAs=num2str(MejWVA); figure(8) plot(tout,WVA(:,1),'r:',tout,WVA(:,2),'b') legend('WVAs','WVAc')
xlabel('Tiempo(seg)') ylabel('Aceleracion vertical media(m/seg^2)')
ins=['Mejora ' MejWVAs ' %']; title(ins) %Gráfica del MSI cal_msi(WVAs,WVAc,V,wo) figure(10) plot(tout,pos_Flap) xlabel('Tiempo (seg)') ylabel('Posición del Flap(grados)') ins=['Posición del Flap']; title(ins) figure(11) plot(tout,pos_TFoil) xlabel('Tiempo (seg)')
ylabel('uTfoil(grados)') ins=['Posición del Tfoil']; title(ins) figure(12)plot(tout,u1) xlabel('Tiempo (seg)') ylabel('ul(grados)') ins=['Salida del controlador']; title(ins) figure(14) plot(tout,u1rd) xlabel('Tiempo (seg)')
ylabel('ulrd(grados)') ins=['Salida de la red de desacoplo para Flap']; title(ins)

```
figure(13)
plot(tout,ulrdsat)
xlabel('Tiempo (seg)')
ylabel('ulrdsat(grados)')
ins=['Salida del limitador para Flap'];
title(ins)
```

CRIBAV •

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

D.3.4 CAL_MSI.M

%CAL_MSI % Esta función dibuja la gráfica del MSI/100 en los casos: (a) sin actuadores % (b) posición fija (c)con control. % Calcula los valores del MSI/100 en el máximo y en la frecuencia de encuentro dominante, % así como el porcentaje de reducción del MSI/100 obtenido. % Parametros de entrada: valor de la acelaración vertical media medida a 40 m del C.G. 8 J velocidad del buque (20, 30 o 40 nudos) % V $\$ SSN $\,$ estado de la mar (4,5 o 6) $\,$ 9 % J. M. Diaz(julio 2000) function cal_msi(WVAs,WVAc,V,wo) % Rango de frecuencias w=0.01:.01:3; % Calculo del MSI sin actuadores msi0=imareo(WVAs,w); % Calculo del MSI con actuadores msi=imareo(WVAc,w); MejMSImax=(msi0-msi)/msi0*100; MejMSImaxs=num2str(MejMSImax); % Calculo de la frecuencia de encuentro Vm=V*0.5145; we=wo+Vm*wo^2/9.8;%wo+Vb/landa o MSIs=imareo(WVAs,we); % Calculo del MSI con actuadores MSIc=imareo(WVAc,we); MejMSI=(MSIs-MSIc)/MSIs*100; MejMSIs=num2str(MejMSI); wes=num2str(we); L=length(msi0); enco=we*ones(L,1); % representación gráfica figure(9) plot(w,msi0,'r:',w,msi,'b',enco,msi0,'k') legend('MSIs','MSIc') xlabel('Frecuencia de encuentro (rad/seg)') ylabel('MSI') ins=['Mejora(1 rad/seg) ' MejMSImaxs ' % Mejora('wes 'rad/seg) ' MejMSIs ' %']; title(ins) **D.3.5 ASM.M** %ASSESSMENT del proyecto CRIBAV %Versión 1.0 %12-7-2000 clear w=what;camino=[w.path,'\Datos'];addpath(camino); close all; global ola tola; Resultados=[];

```
Resultados=[];
Velocidad=['20';'20';'30';'30';'40';'40'];
Estados=['4';'5';'4';'5';'4';'5'];
tfin=50;
```

CRIBAV -

Versión: 1 Fecha: 22/12/2000 SubProy.: TAP97-0607-C03-02

Control Robusto e Inteligente de Buques de Alta Velocidad

fprintf(fid,'EXPER \tWVAc \tWVAs \tMejWVA \tMSIc \tMSIs \tMejMSI \tTiempoTFout \tCavitacionTF \tCavitacionFL\n'); for i=1:length(Estados), ProWVAc=0;ProWVAs=0;MSIc=0;MSIs=0; U=Velocidad(i,:);ssn=Estados(i);V=str2num(U); Cad=['load mod',U,';load exper',U(1),'e',ssn]; eval(Cad); inicio sim('Barco'); resul; Resultados=[Resultados;WVAc,WVAs,MejWVA,MSIc,MSIs,MejMSI,TiempoTFout,CavitacionTF,Cavitaci onFL]; \t%4.2f \t%4.2f \t%4.2f \t%4.2f fprintf(fid, ' \t%4.2f \t%4.2f \t%4.2f \t\t\t\t84.2f \t\t\t\84.2f\n',WVAc,WVAs,MejWVA,MSIc,MSIs,MejMSI,TiempoTFout,CavitacionTF,CavitacionFL); end; IndiceTotal=[mean(Resultados(:,1)),mean(Resultados(:,2)),mean(Resultados(:,3)),mean(Resultados (:,4)),mean(Resultados(:,5)),mean(Resultados(:,6)),mean(Resultados(:,7)),mean(Resultados(:,8)) ,mean(Resultados(:,9))];
fprintf(fid,'********* *********************\n'); fprintf(fid,'Promedio sobre los nueve casos posibles.\n'); ***** fprintf(fid,'******* *********************\n'); fprintf(fid,' \tWVAc \tWVAs \tMejWVA \tMSIc \tMSIs \tMejMSI \tTiempoTFout \tCavitacionTF \tCavitacionFL\n'); fprintf(fid,' \t%4.2f \t%4.2f \t%4.2f \t%4.2f \t%4.2f \t%4.2f \t%4.2f \t\t\t\t\ diceTotal(6),IndiceTotal(7),IndiceTotal(8),IndiceTotal(9)); fclose(fid); ***********); disp('Promedio sobre los diferentes casos posibles.\n'); **********); 1TPD(disp(sprintf('WVAc \tWVAs \tMejWVA \tMSIc \tMSIs \tMejMSI \tTiempoTFout \tCavitacionTF \tCavitacionFL')); disp(sprintf('\%4.2f \t%4.2f \ \t%4.2f \t\t%4.2f tal(6),IndiceTotal(7),IndiceTotal(8),IndiceTotal(9)));

CRIBAV -

CONTROL ROBUSTO E INTELIGENTE DE BUQUES DE ALTA VELOCIDAD

BIBLIOGRAFIA

- [1] J. Aranda, J.M. de la Cruz, B. de Andres, J.M. Díaz, S. Estebán, J.M. Girón, L. Grau, J.A. López, P.Ruipérez. (1999) Datos utilizados en la identificación de modelos lineales de la dinámica vertical del buque TF-120. Informe técnico nº CRIBAV-00-01. Dpt. Inf. y Aut. UNED Proyecto TAP 97-0607-C03-02.(www.dia.uned.es/cribav/)
- [2] J. Aranda, J.M. de la Cruz, B. de Andres, J.M. Díaz, S. Estebán, J.M. Girón, L. Grau, J.A. López, P.Ruipérez. (1999) Identificación de modelos lineales continuos para la dinámica vertical del buque TF-120 (mediante algoritmos genéticos y mínimos cuadrados no lineales). Informe técnico nº CRIBAV-00-02. Dpt. Inf. y Aut. UNED. Proyecto TAP 97-0607-C03-02.(www.dia.uned.es/cribav/)
- [3] J. Aranda, J.M. de la Cruz, J.M. Díaz, P. Ruipérez. (1999) Identificación de modelos lineales para la dinámica vertical del buque TF-120. Informe técnico nº CRIBAV-02-01. Dpt. Inf. y Aut. UNED. Proyecto TAP 97-0607-C03-02.(www.dia.uned.es/cribav/)
- [4] J. Aranda, J.M. de la Cruz, J.M. Díaz, P. Ruipérez. (1999) Identificación de modelos lineales continuos con intervalos de confianza para la dinámica vertica del buque TF-120. Informe técnico nº CRIBAV-02-02. Dpt. Inf. y Aut. UNED. Proyecto TAP 97-0607-C03-02.(www.dia.uned.es/cribav/).
- [5] J. Aranda, J.M. de la Cruz, J.M. Díaz, P. Ruipérez. (2000) Disminución del indice de mareo mediante un control PD sobre heave y pitch en el buque TF-120. Informe técnico nº CRIBAV-02-03. Dpt. Inf. y Aut. UNED. Proyecto TAP 97-0607-C03-02.(www.dia.uned.es/cribav/)
- [6] J.M. de la Cruz. *Evaluación* (2000) Informe técnico nº CRIBAV-01-04. Dpt. Arq. Comp. y Aut. U. Complutense. Proyecto TAP 97-0607-C03-01.(www.dia.uned.es/cribav/).
- [7] S. Esteban, J.M. Girón, J.M. de la Cruz. *Modelado de actuadores*.(1999) Informe técnico nº CRIBAV-01-03. Dpt. Arq. Comp. y Aut. U. Complutense Proyecto TAP 97-0607-C03-01.(www.dia.uned.es/cribav/)
- [8] A.R.J.M. Lloyd. (1989) Seakeeping. Ship Behaviour in Rough Weather. Ellis Horwood.
- [9] Z. Michalewicz.(1999) *Genetic Algorithms* + *Data Structures* = *Evolution Programs*. Third, Revised and extended Edition. Springer.
- [10] Optimization Toolbox. User's Guide. The Math Works. Inc. Version 5