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Abstract: Experiments in towing tanks are concerned with the determination of the
motion transfer functions, which are obtained by testing in irregular waves. For this
purpose a model of pitch and heave motions has been developed, and the identified
models of the vertical plane motions of a high-speed craft are showed. Linear models
are obtained for different sea states and ship speeds. A general low order model is
obtained by pole-zero cancellation. So, a full model may be considered for simulation
and verification, and a low order model for design. From the lowest order models, a
state space model is obtaingdopyright(] 1998 IFAC
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1. INTRODUCTION

The main problem for the development of a high-

speed craft is concerned with the passenger’'s comfort
and the safety of the vehicles. The vertical acceleration
associated with roll, pitch and heave motions is the
cause of motion sickness. The roll control is the most
attractive candidate for control since increasing roll

damping can be obtained more easily. However,

shipbuilders are also interested in increasing pitch and
heave damping. In order to solve the problem, anti-
pitching devices and pitch control methods must be
considered. Previously, models for the vertical ship

dynamic must be developed for the design, evaluation
and verification of the results.

The number of published investigations about ship
modelling is immense. For example, a nonlinear
model in 6 degree of freedom is shown in Fossen and
Fjellstad (1995), a survey of ship models and
experimental techniques for identification of ship
dynamics are described in several publications (see for
example: Fossen, 1994; Webster, 1992; Lloyd, 1989).

The hydrodynamic and derivatives coefficients
occurring in the equations of motion cannot be
calculated analytically and hence tests with the
physical model are carried out in towing tanks,
rotating arms tanks and Planar Motion Mechanism
(PMM). Experimental techniques (as described in
Lewis, 1989, or Linkes, 1980) can be used to
determine these coefficients.

The system identification techniques (Ljung, 1987)
have also been utlised to develop hydrodynamic
coefficients for mathematical modelling of ship
trajectories (see for example the early work of Astrom
and Kalstrém, 1976). Another alternative is to apply a
state augmented extended Kalman filter (Gelb, 1986)
to estimate the ship parameters (see for example
Fossenet al, 1996). Usually, different manoeuvres
and PRBS input signalsvié@ steering machine or
helmsman) are defined for identification.

Experiments in towing tanks are concerned with the
determination of the motion transfer functions.
Usually, tests in regular waves are made to
experimental determination of the motion transfer
functions. In this case, it is necessary to record the



sinusoidal motions of the model and to determine the
motion amplitudes experienced for a variety of
different waves frequencies. The incident waves can
be measured using a wave probe mounted on the
towing carriage. This introduces a phase shift in the
recorded motions and it is necessary to correct for this
effect in the analysis.

Also, the transfer function can be obtained by testing
in irregular waves. In this case the phase for each
frequency component should be corrected, but this is
not possible with a continuous spectrum. Instead a
rational approximation is used.

The aim of this paper is to develop a model of pitch
and heave motions. The model identification of
vertical plane motions (pitch and heave) of a high
speed craft (Turbo Ferry TF-130) by testing it using
irregular waves in the towing tank of the CEHIPAR is
showed. A high order model is identified and later a
lower order model with a delay is proposed.

The model is obtained by system identification
techniques following the three usual major steps: a)
model structure determination, b) parameter
estimation, and c) model validation.

2. LINEAR EQUATIONS OF VERTICAL MOTION

As noted in Lewis (1989), the separation of the
response of the ship into vertical and horizontal plane
motions is the result of linear theory and the fact that
for a port/starboard symmetric ship there is no cross-
coupling between them.

The linear equations of pitch and heave motions are
(see Lewis, 1989):

Ah-Axg6 = )
- [A33H +Bygh+Cygh + Aggf +Bys6 + C259]+ Fex,
| W6 —Axgh=
Yoo . . : (2)
- [A53h +Bggh + Cs3h + Agg8 + Bsgb + C559]+ M ex
where:
A is the total mass of vessel,
h is the response of ship to waves in heave
mode,
(xg.0,25) are co-ordinates of the centre of gravity
of the ship,
0 response of ship to waves in pitch mode,
A overall added mass,

overall damping,

Ci overall restoring,
(subscripts j,k indicate modes)
inertia moment around the y-axis,
vy
Fex, Exciting force due to waves,

ox Exciting moment due to waves.

From here, one can obtain:

(8 + Agz)h+(Ags —Axg )P =

. . 3
= _[B33h + C33h + B356 + C359]+ Fexz ( )

(A -tx i+ (1, + AP =

: : 4
= _[Bssh +Cysh + By + C559] +M.,,

By Laplace transform and with a second order
approximation for forces and moments:

|_(A + A33)52 +Bass+ C33Jh +

+ (Aes —DXg )52 +BgsS+Css P = (%)
=f,s% + fos+ f,
2
|_(A53 AN )S +Bggs+ Csth +
+ [(' yy t A55)32 + B555‘*(355}9 = (6)
= (mls2 +m,s+ m3)J
whereu is the wave surface elevation.
From here it is easy to see that:
H,,(S)F(s)—H,(s)M (s
h(s) = 22(S)F(s) —H 15 (S)M(s) u(s) )
H11(S)H 22(8) ~H21(S)H12(9)
o( = _HEOMO - HAOF© o (g
H11(S)H 22(8) = H1(S)Hya(9)
where:

H11(5) = (A + Ags)s” + Bygs+ Cyy

H12(S) = (Ags = AXg )s° + Bgss+ Cag
H(s) = (Ass —AXg )52 + BgyS+ Gy
H oo (s) = (' y T Ass)SZ + Bggs + Css

F(9) = f,8° + fo5+ fy

M(s) = ms® + m,s+m,

The model obtained by identification is discrete, so a
discretization of (7) and (8) must be made.



The discrete transfer functions corresponding to (7)
and (8) can be written as:

8 - G(2)u(2)
_ 1 r-1
G(Z)_ﬁ Nl V4 +...... + Nr (9)

d(2)=z" +d; 2"t +...+d,

where, d(z) is the least common multiple of the
denominators (of order) and\; are matrices with the
relevant coefficients of the numerators.

A representation in state space can be obtained by a
canonical realization (see for example Kailath, 1980).
So, the following is a realization of (9):

X(k+1) = Ax(k) + B u(k) (10)
y(k) =C x(k)
where:
g—dl -d, —d,% %E
1 0 0
A:BO 1 0% B:ug c=Mu N2 - nlr%
SO o .. o0 E EE 21 M2z - - Nar Gy,
Ho o o1 of, B,
(11)

3. SCALE-MODEL TESTING

A model test was carried out in the towing tank of the

CEHIPAR. The model was free to move in heave

direction and pitch angle. In the experiments, the sea
states (SSN), according to STANAG 4194 (Stan-

darized Wave and Wind Environments and Shipboard
Reporting of Sea Conditions), were 4, 5 and 6.

The waves spectrum was JONSWAP type (see Figure
1). The wave surface elevation was measured at 3.8 m.
forward from model bow (this is equivalent to 95 m. in
full scale).

This introduces a phase lead in the recorded motions
for each wave frequency component. The phase lead
for each wave frequency iIsx, wherek is the wave
number k=af/g), andx is the distance from the bow to
the wave probey is the wave component frequency, g
is the gravity. The phase lead is proportionatsto A
rational approximation for this effect can be made and
its zero-pole distribution is similar to that shown in
Figure 2.

Furthermore, different ship speeds and courses were
tested. In the first and second columns of Tables 1 and
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Fig. 1: Wave spectrum for test with a speed of 30

knots and sea state 5.
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Fig. 2: Zeros-poles distribution for the waves phase
lead.

4. IDENTIFICATION PROCEDURE

In this section the pitch and heave dynamics are
identified according to the mathematical model
proposed in Section 2. In these models the phase lead
approximation of section 3 is considered. Hence, ARX
models are tested:

A(Q)y(t) = B(a)u(t - ny) +e(t) (12)
whereny is the time delayA andB are polynomials in

the delay operator of orderg and R, respectively.
The sampling rate is 4 Hz.

The model structure has been selected by Akaike’s
criterion, and possible pole-zero cancellation has been
considered. Tables 1 and 2 show, respectively, the
orders of the best models for pitch and heave
dynamics and the final prediction error for every sea

2 are showed the sea states and ship speeds considered state and ship speed. With this criterion a different

for testing.

structure for each condition has been obtained.



A common structure for all the models can be

considered. This structure is chosen by an iterative
procedure, the different structures are compared and
the structure with less FPE value for all conditions is

selected.

Table 1: Model structure for pitch dynamic

Sea | Ship | Ordersof| FPE*10° | FPE*10°
state | speed| the best | (degrees(®) | ((°°)
(knots)| ARX of the best ARX
models | ARX models| model

(Ng, N, 1Y) (10,10,10)

20 | (10,10,8) 3.0893 3.1365

4 30 [ (9,10,10) 8.8617 9.1222

40 (9,10,9) 18.045 18.792

20 |(10,10,10 1.5895 1.5895

5 30 | (2,10,10) 21.913 42.906

40 (9,9,2) 10.430 10.739

20 (8,10,8) 1.8767 1.8968

6 30 | (10,8,10) 4.8242 4.9255

40 | (10,10,6) 7.5757 8.3722

Table 2: Model structure for heave dynamic

Sea | Ship | Ordersof| FPE*10* | FPE*10*
state | speed| the best | (m?) of the (m?)
(knots)| ARX best ARX ARX
models models model
(navnbank) (81715)
20 (10,5,6) 3.5028 4.1930
4 30 (3,7,7) 4.169 4.4144
40 (7,8,6) 5.1802 5.4957
20 | (8,10,4) 4.6171 4.8438
5 30 | (10,9,3) 7.5599 7.8218
40 | (8,10,4) 10.970 11.218
20 | (10,10,2) 5.7798 5.8848
6 30 (8,6,6) 9.9269 9.8687
40 (8,7,5) 21.769 21.190
Table 3: FPE of low order models
Sea | Ship FPE*10° FPE*10”
state | speed (%) (m?)
(knots)| pitch model heave model
(4,4,10) (4,3,5)
20 8.3695 4.7912
4 30 22.648 5.5650
40 32.925 6.1778
20 3.5991 6.3880
5 30 42.626 9.2055
40 16.058 13.512
20 3.8712 6.8929
6 30 12.431 11.914
40 20.236 25.612

The common structure is (10,10,10) for pitch dynamic
and (8,7,5) for heave dynamic. The last column of
Tables 1 and 2 show the FPE of the models with this
structure for every sea state and ship speed.
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Fig. 3: Autocorrelation of residuals of the low order
pitch dynamic model for sea state 5 and a ship
speed 30 knots.
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Fig. 4: Autocorrelation of residuals of the low order
heave dynamic model for sea state 5 and a ship
speed 30 knots.

As can be seen, for every condition the models with
the common structure have values of FPE that are
slightly worse than the FPE values obtained with the
best ARX models. Nevertheless, the difference is
small and the common structure can be considered for
all conditions of sea state and ship speed.

Then, a low order model has been obtained by pole-
zero cancellation, and the phase lead for each
frequency component has been approximated by a
simple delay.



Table 3 shows the FPE values for these models.
Figures 3 and 4 show the autocorrelation of the
residuals of the pitch and the heave models for sea
state 5 and a ship speed of 30 knots. As can be seen
from this example and for validation purpose, the
residuals of the low order models are acceptable.
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Fig. 5: Poles (x) and zeros (o) of the pitch low order
model in function of ship speed.
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Fig. 6: Poles (x) and zeros (o) of the heave low order
model in function of ship speed.

Therefore, a full model is considered for simulation
and verification, and a low order one for design, with
parameters that are function of ship speed and sea
state. Figures 5 and 6 show the poles and zeros of the

pitch and heave low order models in function of ship
speed. The ship speeds are marked with numbers 20,
30 and 40 close to the relevant poles and zeros; the sea
state is 5. Figure 7 shows the pitch Bode plot in
function of ship speed (the solid line corresponds with
ship speed of 20 knots, the dashed line with 30 knots
and the dotted line with 40 knots).

Amplitude
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Fig. 7: Bode plot of the pitch low order model.

A similar behaviour is observed with sea state
conditions, figures 8 and 9 show the poles and zeros in
function of sea state. (The sea states are marked with
numbers 4, 5 and 6 close to the relevant poles and
zeros; the ship speed is 40 knots).

From these lowest order models, a representation in
state variables is obtained according to Section 2. In

this model the coupling between pitch and heave

motions can be seen. For example, with sea state 5 and
a ship speed of 40 knots the transfer functions are:

0.0113%2 -0.004& +0.0243
7’ -1.403% -0.2537° +1.181z* -0.4212°

h(z) = u(2)

0(2) =~ 0.0158° +0.08894° - 0.089&z + 0.1301 u(2)
78173772 +15157-1.182/° + 0.5874°

The dominant poles in the heave model correspond to
a complex conjugate pair with a damping of 0.145 and
a natural frequency of 1.381 rad./sec. In the pitch
mode the dominant poles correspond to a complex
conjugate pair with a damping of 0.222 and a natural
frequency of 1.383 rad./sec.

The state space representation for this case is given by
(11), where the coefficients; of matrix A andn; of
matrix C are showed in Table 4.
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Fig. 8: Poles (x) and zeros (o) of the pitch low order
model in function of sea state.
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Fig. 9: Poles (x) and zeros (0) of the heave low order
model in function sea state.

Table 4: Coefficients of matrices A and C

i -d; [ oy [y
31401 0 0
36997 0 0
16880 0 0
06094 0 0O
219951 00113 0
211820 -0.0245 0
11911 00499 0
02472 00630 0

0 0.0493 0
0 -0.0316 -0.0158
0 0.0143 0.1111
-0.2104
0.2147
-0.0482
-0.1762
0.1914
-0.0548
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5. CONCLUSIONS

System identification techniques have been used in
order to obtain a mathematical model for the vertical
dynamics of a high speed craft. A collection of tests
was performed using irregular waves in a towing tank.
The data collected have been used to adjust the
parameters of different low order ARX models for the
pitch and heave dynamics.
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