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Abstract: This paper describes the design of a robust QFT (Quantitative Feedback Theory) 
controller for the control of the changing of a ship's course in the presence of disturbances. 
A linear model is used with uncertainties in the parameters obtained from the non-linear 
model of the ship. The required performance specifications and the existing number of 
plants determine the bounds which the system must not violate. The results are compared 
with those obtained with a conventional PID controller by means of genetic algorithms. 
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1. INTRODUCTION 
 

In any physical process which one aims to control, 
certain performance specifications must be fulfilled. If 
the mathematical model of the system is not exact or if 
there are external disturbances, that is, if the system 
presents uncertainties, it is then necessary to use robust 
control techniques in the design of the controller. 
Among the different techniques available, the QFT 
(Quantitative Feedback Theory) method developed by 
Horowitz (1992) has been chosen for this work. With 
this model, the physical dimension of the problem is 
maintained at all times and an adequate balance is 
achieved between the structure level of the process and 
the complexity of the problem. 
 
The above method is applied in this work for the 
course-changing control of the ship, the R.O.V. 
Zeefakkel (Fossen and Paulsen, 1992), using for the 
design of the QFT controller the first order Nomoto 
model (Nomoto, et al., 1957) which relates the heading 

angle with the rudder angle. Saturation effects have 
been taken into account in the design. The results are 
compared with those of a conventional autopilot. 
 
 

2. MATHEMATICAL MODEL OF THE VESSEL 
 
Figure 1 shows the block diagram of a ship steering 
system with a conventional autopilot (PID controller). 
Saturation effects have been taken into account both in 
the rudder angle and in the speed of change of this 
angle. 
 
The command applied is ψr, which represents the 
desired heading and ψe is the heading error. The 
control signal of the controller which acts as a 
command to the steering gear is δc and represents the 
rudder angle required to correct the deviation from the 
heading. The actual value of the rudder angle is δ and 
ψ is the ship's course. 
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Fig. 1. Block diagram of a conventional steering system 
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The mathematical model of the ship's dynamics 
between the rudder angle signal δ and that of the 
ship's course ψ assuming that the relation is linear 
(Van Amerongen and Udink Ten Cate, 1975), can be 
represented (Nomoto, et al., 1957) by the transfer 
function: 
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or equally by the differential equation: 
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where K, T1,  T2 and T3  are the parameters which 
represent the ship's dynamics. These parameters are 
basically determined by the dimensions and forms of 
the vessel and also depend on operating conditions 
such as ship speed, load or ballast situation, draft, 
trim and water depth. 
 
Equation (1) is usually approximated by 
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with T = T1 + T2 - T3. 
 
Expressed as a differential equation: 
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This attractively simple model provides a reasonably 
accurate representation of the performance of vessels 
when they keep a straight course or one with only 
slight changes. However, if the characteristics of the 
vessel's rotation are to be studied, a non-linear term 
(Van Amerongen and Udink Ten Cate, 1975) can be 
added to the linear model:  
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where )(HB ψ&  is a non-linear function of ψ&  which is 

obtained from the relation between  ψ&  and  δ in the 

steady state by means of the spiral test. This can be 
approximated (Van Amerongen and Udink Ten Cate, 
1975) by: 
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If equation (4) is used, we get 
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3. CONTROL PROBLEM 
 
An autopilot must fulfil two objectives: course 
keeping and course changing. In the first case, the 
control objective is to maintain the ship's heading 
following the desired course (ψ(t) = constant). In the 
second case, the aim is to implement the change of 
course without oscillations and in the shortest time 
possible. In both situations, the operability of the 
system must be independent of the disturbances 
produced by the wind, the waves and the currents.    
 
The course followed by a vessel can be specified by 
means of a second order reference model (Fossen, 
1994): 
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where ωn is the natural frequency and ζ ( 0,8 ≤ ζ ≤ 1) 
is the desired damping coefficient of the closed loop 
system. 
 
As an application of the proposed methodology, the 
simulation of the behaviour of a vessel of 45m in 
length, the R. O. V. Zeefakkel, is performed. The 
model's parameters at a speed of 10 knots are (Fossen 
and Paulsen, 1992):  

K = 0.5 s-1,  T = 31 s,  n1 = 1,  n3 = 0.4 s2 
 
 

4. DESIGN SPECIFICATIONS 
 
The aim of the design of this work is that the vessel 
should make a fast change of course following, 
without oscillations, the course determined by the 
values ζ = 0.9 and ωn = 0.07 rad/s and that this 
course should be maintained despite the effect of 
bow waves in the order of 1m in significant height. 
(Moyano, et al., 2000) It is considered that these may 
lead to variations in the course of up to 1º. 
 
The non-linearities in the ship model mean that the 
performance in response to changes in course may 
vary. The prior study of this effect has led the authors 
to consider for the model design the vessel given by 
equation (3) with the following uncertainty in the K 
and T parameters (at a speed of 10 knots): 
 
 K ∈ [0.21, 0.5] 
 T ∈ [29.5, 31] 
 
Despite the fact that the model is non-linear, the QFT 
model for linear SISO systems with parametric 
uncertainty will be used, incorporating the two-
degrees-of-freedom control system shown in figure 2. 
This includes a cascade compensator, G(s), and a 
prefilter F(s) (both LTI) in order to reduce the 
variations in the output of the system caused by the 
uncertainties in the plant parameters and 
disturbances. 
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Fig. 2 Block diagram of the two degree-of-freedom 
control system 

 
The system must fulfil robust stability and robust 
tracking specifications (Houpis and Rasmussen, 
1999; Yaniv, 1999): 
 
For the robust stability margins, the phase margin 
angle should be at least 45º and the gain margin 2 dB. 
Thus, the robust stability specification is defined by: 
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Robust tracking: The change of course must be 
defined within an acceptable range of variation. This 
is generally defined in the time domain but is 
normally transformed to the frequency domain, being 
expressed by: 
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where TR(s)  represents the closed loop transfer 
function and TRL(s) and TRU(s) the equivalent transfer 
functions of the lower and upper tracking bounds. In 
this case, the following is specified: 
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with a =269.5*10-6, b = 181*10-3, c = 118.3*10-4 
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for  ω ≤ 0.4 rad/s, as shown in  Figure 3. 
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Fig. 3 Robust tracking specifications. 

As mentioned above, the aim of the design is to 
maintain the course even when there are bow waves. 
No disturbance rejection restriction has been 
specified because the simulation considers only 
waves of a reasonable force. 
 
 

5. SIMULATIONS 
 
The following nominal plant has been chosen for the 
design: 
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and the following set of frequencies for the design 
has been established: 
 

}2.1,1,4.0,2.0,1.0,07.0,03.0{=Ω  (15) 

 
Using the Matlab QFT Toolbox (Borguesani, et al., 
1995) the plant templates are computed for each 
frequency, as shown in Figure 4. 
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Fig. 4 Plant Templates. 
 
On the basis of the performance specifications and 
the plant templates, the robust stability and robust 
tracking bounds are calculated. The intersection of all 
of the bounds at the various frequencies is shown in 
Figure 5. 
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Fig. 5 Intersection of bounds. 
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For the design of the G(s) controller, the Nichols 
Chart is used, adjusting the nominal open-loop 
transfer function L0 = P0G (P0 is the nominal plant) in 
such a way that no bounds are violated, as shown in  
Figure 6. 
 

 
Fig. 6 Shaping of L0(jω) on the Nichols chart for the 

nominal plant. 
 
The controller obtained is: 
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With this controller, the robust stability specification 
is fulfilled but not the robust tracking specification, 
as can be seen from Figures 7 and 8. The solid line 
shows the response of the system and the dashed line 
represents the specifications. 
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Fig. 7 Robust Stability 
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Fig. 8 Robust Tracking 
 
By adjusting the prefilter: 
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a restriction on the frequency response of the system 
is obtained such that it is maintained within the limits 
imposed in the design. It is also verified that the 
control structure designed allows the ship's course to 
fit the specifications for various course changes. As 
examples, Figures 9 and 10 show the results for 
changes in course of 10º and 30º respectively. 
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Fig. 9 Course changing manoeuvre. ψr = 10º  
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Fig. 10 Course changing manoeuvre. ψr = 30º 
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The change of course manoeuvre obtained with QFT 
design has been compared with that of a vessel with a 
conventional PID controller which has been tuned by 
means of genetic algorithms: 
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Figure 11 shows a change of course manoeuvre of 10º 
for the two controllers and Figure 12 illustrates the 
required variations in the rudder angle (control signal). 
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Fig. 11. Change of course manoeuvres for the QFT 

(solid line) and PID (dashed line) controllers. 
Reference heading (dotted line). 
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Fig. 12. Rudder Angle. QFT signal control (solid line), 

PID signal control (dotted line) 
 
 

6. CONCLUSIONS 
 
This paper describes the use of the QFT robust control 
technique which is highly suitable since the system 
presents uncertainties and disturbances. Robust 
stability and robust tracking specifications have been 
imposed. The results have been compared with those 
obtained using a conventional PID controller. It can be 
observed that a more satisfactory result is obtained 
with the QFT controller in the response of the system 
at the expense of an increase in the complexity of the 
control. 
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