IDENTIFICATION FOR ROBUST CONTROL OF A FAST FERRY
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Abstract: The interval transfer functions from wave height to pitch and heave movement
described in this paper are interpreted as a family of transfer functions whose
coefficients are bounded by some know intervals and centred at nominal values. The
nominal model is obtained by a non-linear least square algorithm of identification
applied in the frequency domain. Once the nominal model was obtained, then the
tightest intervals around each coefficient of the nominal transfer functions was created
while satisfying the membership and frequency response requirements. Different model
validation tests was made (Bode plots and simulations). These tests show that the
uncertainty model obtained is a valid interval model and it can be used for robust control
design.

Keywords: Identification algorithms, Optimization problem, Robust performance.

1. INTRODUCTION (1994) and Lewis (1989). These models are
theoretical and they are obtained from the equations
The main problem for the development of high speed of a rigid solid partially immersed in water.
ship is concerned with the passenger’'s comfort and
the safety of the vehicles. The vertical acceleration Obtaining a very accurate mathematical model of a
associated with roll, pitch and heave motion is the system is usually impossible and very costly. It also
cause of motion sickness. The roll control is the mostoften increases the complexity of the control
attractive candidate for control since increasing roll algorithm. A trend in the area of system identification
damping can be obtained more easily. However,is to try to model the system uncertainties
shipbuilders are also interested in increasing pitch (Bhattacharyya et al.,, 1995) to fit the available
and heave damping. In order to solve the problemanalysis and design tools of robust control.
antipiching devices and pitch control methods must
be considered. Previously, models for the vertical The interval functions described in this paper are
ship dynamic must be developed for the design,interpreted as a family of transfer functions from
evaluation and verification of the results. wave height to pitch and heave movement whose
coefficients are bounded by some know intervals and
The number of published investigations about ship centred at nominal values. The nominal model
modelling is immense. For example, non-linear (Aranda et al., 1999b; Aranda et al., 2000) is
models in 6 degrees of freedom are shown in Fosserobtained by a non-linear least square algorithm



applied in the frequency domain. Once the nominal P = (Xys X reer X s Xag oo Xpormeg) - (3)
model is obtained, then the tightest intervals around

each coefficient of the nominal transfer functions are o ~

created while satisfying the membership and The est!matlon of the parameter vecf8ris made by

frequency response requirements. a non-linear least squares procedure that uses the
following cost function (Schoukens and Pintelon,

1989):
2. IDENTIFICATION METHODOLOGY N
o K(P)= > (ReC(i@.)) - (ReG(iw)) +  (4)

The method describes in this paper follows the steps =
of classical identification diagram (Ljungl989; +j(Im(G(jwek))—(Im(é(jwek)) P
Schoukens and Pintelon, 1991; Sédertrém and Stoica,
1989). A model test was carried out in the towing A number of considerations need to be made based in
tank of CEHIPAR (Madrid, Spain). The model was a priori knowledge of the ship dynamics. So, there are
free to move in heave direction and pitch angle. Thethree constraints in the identification process of the
wave surface elevation was measured at 68.75 mmodels:
forward from model bow. Different regular and
irregular waves and ship speed were tested. A set 0f The models must be stables.
simulated data (Aranda et al., 1999a) has been. The gain of G(s) must tend to zero in low
generated by the program PRECAL (which uses agncounter frequencies.
geometrical model of the ship to predict her dynamic , Tpe gain of G(s) must tend to one in low
behaviour), reproducing the same conditions of the gcounter frequencies
experiments with regular waves.

) ) - ) The solution to a non-linear least squares problem
Two transfer functions are identified (see Figure 1):  \ith constrains is described for example in

] . Soderstrom and Stoica (1989), and can be
* Gg(s): transfer function from wave height (m) to  programmed using MATLAB.
pitch movement (°).
e Gy(s): transfer function from wave height (m) to

heave movement (m). 3. INTERVAL MODELLING
0 Bhattacharyya et al. (1995) describes a method to
- PITCH(}
Ge(s) obtain the family of linear time invariant systems
WAVE HEIGHT (m) G(s) by letting the transfer function coefficients lie
in intervals around those of the nominal G(s). This
6.9 HEAVE (m) method is adapted to our problem. Let
s
"
y(jw,) = D(jw,)u(jw,) i =1,2,...,N Q)

Fig. 1. Blocks diagram of the identified system

where g,0,...0n are the test encounter
The identification is made in the frequency domain frequencies and the complex numberauyj and
and uses the simulated data of magnitude and phas¥(iux) denote in phasor notation the input-output pair
obtained by the program PRECAL in the encounter at the frequencya, generated from an identification
frequencywy (i=1,2,...,25) for the transfer functions experiment. Suppose thal(§) is the transfer function

Grlj) and Gy(jo). of a linear time-invariant system which is such that
G'(jw) is closest to D¢r) in some norm sense. In
GP(jwei):Re(GP(jwei))+jlm(GP(jwei)) 1) fqene.ral itGiS nfot po;sigle tp firld a single ra'gonal
Gy (jw,) =Re(Gy, (jw,))+ jIm(G, (jw.)) unction G(s) for which G)=D(cx) and the

more realistic identification problem is to fact

In general, the estimated transfer functions identify an entire familyG(s) of transfer functions

G, (s)andG, (s) can be written in the following form: ~ which is capable of validating the data in the sense
that for each point D) there exists some transfer

ST X, ST X function G 0 G(s) with the property that Gea)=

S"+x, 8" .+ X D(jo).

e

G(s) = Zneme

Let the nominal transfer function'@), which has

where m is the number of zeros and n is the total : e )
been identified by a non-linear least squares

number of poles. The parameter vector is:



procedure explained in the previous section, and theG(waI) _ (&+ije.25<n+3+----)+j i Keep = W, K +) (12)

transfer function G(s) with the form: ' (& -, % + o)+ oo -, %%+
G(9) = RoemiaS” F RS F oot Koy ©6) if G(jw) is made equal to the data setdq)jfor a
S"HX ST LK particular encounter frequenay;, then:
The family of linear time-invariant systen@(s) is D(jw,)=a, + B, :n1+—JW (13)
defined by : di+ a2

G(9) ={G(9): % O[x —w, &, ,x +w, [&;] Oif (7 _ _ _ :
© { (9):% ODx —wi, [ +w T2, ] I}() Operating, the next pair of equations are obtained:
where w; are to be regarded aseights chosen Elo B % Xomd)=(@.dl- Bd2)-nl=0
apriori whereas the's are to be regarded adation 1 "B"Xli""’ i )= (@d1-pd2) (14)
parametersto be determinated by the identification R, B X X vma )= (B d1+,d2) -n2=0
algorithm and the data @§};).

X. for all i is defined by:

3.1 Weight selection . o O=1..n+m+l
X =X +weE | ’ (15)
Suppose the test data consists of N data points
obtained at corresponding frequencies,
Rewrite (14) in terms of a matrix equations:
D(jw,) ={D(jw,) =a; + B, i =12..N} (8)
AX+AWE '=-E

0Ooo

(16)
the " model is defined as: AW '=-B-E
) (jog) =1 :
G(jw)=H, . 9 where
(Jowg) 1=12,....1 =11 +1....,N
—_ |17i _ﬁiwel aiwewz _ﬁi(")en3 " _l 0 wewz O we\A .
. . . . . A=Q 2 3 3
The model @jw,) is identical to the nominal B aw, -fwy aw;, . 0 @ 0 w O
identified model &jw,) with the I" data point E= %klwei" B
replaced by the"l component of the test data &) h k0, B
h . . pn . el
Noyv t_he_ | |q§ntlfled model Gs) is _constructed, qa, Sin=048..... BB‘ Sin=048....
which is identified from thé" data set @w). Let . o
K :D_Bi sin=159,.... K _0a sin=159,.... (17)
| o | t g sin=2610... * H-p sin=2610...
G ' (9= 2mmS T ¥ Ko (10) Hp sin=a711... Ha sin=3711...
s"+x,'s" L X, W 00
g 0
The models (§s) must be identified with the same W:E B
method used to identify the nominal modelj@). 50 5
The weight vecton is : . .
g 'x:[sxl ...... ey M]
=B S o 5 s A K= Koo
- qu X1 X1 g ’N Z n+m+l n+m+l H(ll) B= AX
W= [le, ...... Wy Wy e W, 1]

E'X is the vector of the dilation parameters obtained

The weight selection is an important stage because arfor the encounter frequenag,. Here it is assumed
inappropriate  selection may results in an Without loss of generality that A;,q;,3) has full
unnecessarily large family. rank. Then the minimum norm soluticf!, can be

computed as:

3.2 Computation of the intervals of the transfer o o 4
function coefficients. £.,=-W (AT A) A'(B+E)  (18)

Replacing s=jy; in (6):



After finding &' for all I=1,...N, the dilation Table 3: Model interval of (4s)
parameters of the intervals of the transfer function

coefficients are determined as follows: Irl;toev:l\?ezl N\c/);r:lljr;al #2?\2{'
_ . . X1 79.95 80.35 83.50
£, = ml'rdo’fx'} £, = m|a>{0'5x'} (19) X 139.79 142.61 143.09
X3 139.63 142.94 144.56
X4 106.31 106.59 109.02
4. RESULTS Xs 35.88 42.62 43.09
Xe 12.98 16.43 16.52
In Table 1 and Table 2 different model structures X8 -6.81 -6.78 -6.28
(where m is the number of zeros, n is the total number o 25.99 26.02 26.35
of poles and nps is the number of simple poles) are X0 -5.14 -0.92 -0.81
showed for heave and pitch movement, at several Xi1 -0.14 3.21 3.28
ship speed. The cost function and mean square error
can be compared when the model structure is Table 4: Model interval of gs)
reduced.
X Lower Nominal Upper
Table 1: Model structures for heave movement Interval value Interval
X1 49.71 50.08 50.87
Ship Model Value of Mean X2 80.70 83.73 84.31
speed Structure the cost  square X3 91.038 91.84 92.42
(knots)  (m,n,nps) function error (m? Xq 63.45 63.99 66.07
20 (4,6,2) 0.0383 0.0143 Xs 28.31 28.73 28.95
20 (3,5,1) 0.0692 0.0141 Xg 6.19 9.85 9.95
20 (2,3,1) 0.0696 0.0138 Xe -53.07 -52.57 -52.48
30 (4,6,2) 0.0385 0.0111 Xo 12.55 13.21 13.47
30 (3,5,1) 0.1012 0.0115 X10 -6.79 -6.05 -4.59
30 (2,3,1) 0.2381 0.0170 X11 0.25 0.53 2.74
40 (4,6,2) 0.0471 0.0112
40 (3,5,1) 0.1045 0.0113 In Figure 2 Bode plot of (§s) and data obtained by
40 (2,3,1) 0.4510 0.0125 PRECAL are showed.

Bode plot (*) Experimental (-) Model

Table 2: Model structures for pitch movement g
Ship Model Value of Mean T -
speed Structure the cost square error *é
(knots)  (m,n,nps) function (QF) z
20 (4,6,2) 0.1213 0.1056 _
20 (3,5,1) 0.1228 0.1052
30 (4,6,2) 0.0938 0.0995
30 (3,5,1) 0.0946 0.0998 ’ T
40 (462)  0.0942 0.1214 ) S
40 (3,5,1) 0.0989 0.1226 O I
The model interval was obtained for each of model & *°[----- T-o
structures show in Table 1 and Table 2. For example, 00 R .
the transfer functions of model structure (4,6,2) for 1w e’ 3
heave movement and pitch movement at 40 knots are: Frequency of encounter (rad/seg)
Jed b, N2y = 2603 — A TEy - Bi1s .
T+ i 1 Er L IR0 + ke 19035 Fig. 2. Bode plot of ({s) and data of PRECAL
program.
————0538% =605 ¥13215 =5228s—— In Figure 3 Bode plot of g&s) and data obtained by

GP(S) = 6 5 4 3 2

PRECAL are showed.

In Table 3 and Table 4 the model interval of(§
and Gs(s) are showed.



Bode plot (*) Experimental (-) Model
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Fig. 3. Bode plot of &s) and data of PRECAL
program.

Figure 4 shows the output of;(3) and the measured

heave in the CEHIPAR when the input was irregular
waves at 40 knots and SSN=5.
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Fig. 4. Simulation of ¢(s) and measured heave at

40 knots and sea state number (SSN) equal to 5.

Figure 5 shows the output o&() and the measured
pitch in the CEHIPAR when the input was irregular
waves at 40 knots and SSN=5.

meats souare error 0.1214
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Fig. 5. Simulation of &s) and measured pitch at 40
knots and sea state number (SSN) equal to 5.

5. CONCLUSION

In this paper continuous linear models for vertical

dynamics of a high speed ship has been showed.
These models were identified by a non-linear least
square algorithm applied in the frequency domain.

Once the nominal model was obtained, tightest
intervals around each coefficient of nominal transfer
functions was created while satisfying the

membership and frequency response requirements.
Different model validation tests was made.
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