Datos Personales:

Licenciado en Ciencias Físicas por la Universidad Nacional de Educación a Distancia (U.N.E.D.) en 1995. Actualmente es estudiante de doctorado dentro del Departamento de Informática y Automática de la U.N.E.D., investigando sobre la aplicación de algoritmos evolutivos y genéticos en la resolución de problemas de control multivariable. Sus áreas de investigación incluyen: optimización multiobjetivo, sistemas de control multivariable, controladores de vuelo, control de barcos, y algoritmos genéticos y evolutivos.


Investigación:

En este trabajo se muestra como se puede aplicar una técnica de optimización multiobjetivo por medio de algoritmos evolutivos, al diseño de un controlador multivariable. Múltiples objetivos, algunos de ellos contrapuestos, son considerados directamente en la forma en que vienen dados en las especificaciones de diseño. Una vez sintonizado el algoritmo, éste puede ser utilizado sin tener que realizar ninguna modificación, con distintos modelos lineales del avión (correspondientes a distintos puntos de funcionamiento), obteniéndose fácilmente un esquema de control de ganancia programada.

Presentado en AIAA Guidance, Navigation, and Control Conference and Exhibit. 14-17 Agosto de 2000, Denver, Colorado. USA.

Actualmente trabaja en el diseño de un algoritmo evolutivo, que permita sintonizar distintas estructuras de control, para reducir las aceleraciones verticales del buque TF-120.


Personal Data:

He received the Physics degree from the 'Universidad Nacional de Educación a Distancia' (U.N.E.D.), Spain, in 1995. Currently he is a Ph. D. student in the 'Departamento de Informática y Automática' (Department of Computer Science and Automatic Control) at U.N.E.D. and is researching on the application of evolutionary and genetic algorithms to the solution of multivariable control problems. His current research interest include multiobjective optimization, multivariable control systems, flight control, ships control, and genetic and evolutionary algorithms.


Research:

This work relates  the use of genetic algorithm for the selection of weighting matrices of performance index for the linear quadratic control design. It's easy to include, in the fitness index of the genetic algorithm, different design specifications and their verifications in different operations conditions, as well as a measure of robustness, Sigma(S+T), input-output  evaluated,  for linearized models obtained with many different parameters. This technique is applied to design a  controller for longitudinal aircraft´s dynamic . The robustness and specifications are evaluated considering different values for mass, airspeed, centre of gravity, and transport delay.

Presented at Controlo’2000: 4th Portuguese Conference on Automatic Control. October 4-6, 2000, Guimarães, Portugal.

This work features how a technique such as  multiobjective optimization by evolutionary algorithms can be applied to multivariable control design. Several objectives, even opposites , are directly considered in the way they appear in design specifications. Once the algorithm is tuned, it is easily applicable without modifications, to many different linear models of the aircraft, (corresponding to differents trim points), getting a gain scheduled control system.

Presented at AIAA Guidance, Navigation, and Control Conference and Exhibit. 14-17 August 2000, Denver, Colorado. USA.

Nowadays he's designing an evolutionary algorithm in order  to tune different control structures to reduce vertical accelerations on the ferry-boat TF-120.