
A real application example of a control structure 
selection by means of a multiobjective genetic algorithm 

M. Parrilla Sánchez and J. Aranda Almansa 

Departamento de Informática y Automática. Facultad de Ciencias. Universidad Nacional de 
Educación a Distancia (UNED). 28850 Madrid. España, 

{jaranda, mparrilla}@dia.uned.es 

Abstract. Control problems are clear examples of multiobjective optimization. 
In this kind of problems a series of objectives, some of them opposed to each 
other, will be optimized in order to fit some design specifications.  
Moreover, evolutionary algorithms have been shown to be ideal for the 
resolution of these kinds of problems because they work simultaneously with a 
set of possible solutions, thereby favoring convergence towards a global 
optimum. In this document we propose a way of dealing with the different 
objectives considered and a genetic-evolutionary algorithm that will enable 
some phases of the controller design to be automated. 
Finally, an application example of the methods outlined will be applied to the 
design of a controller to reduce the sickness index on a high-speed ship. 

1 Introduction 

Many problems in science and engineering require the simultaneous optimization of 
multiple objective functions. It will therefore be necessary to optimize a function of 

the form TSf →:  where nS ℜ⊂  and mT ℜ⊂ . However, the problem is that there 

is not usually an element in S producing an optimum simultaneously for each of the m 
objective functions. This is due to a conflict among objectives. Thus, improvement in 
one of them gives rise to deterioration in another. Consequently, it will be necessary 
to reach a compromise or trade-off solution in which all the objectives are satisfied in 
an acceptable degree from the point of view of the design. 

Evolutionary algorithms have demonstrated good behavior in the solution of 
multiobjective optimization problems. Evolution in these kinds of algorithms is 
achieved by evaluating each solution coded in the chromosome population in order to 
see its fitness and compare the results of this evaluation so that the most suitable 
solutions have a higher probability of reproducing and transmitting their 
characteristics to their offspring. 

When comparing fitness a new problem arises. What should be compared in the 
treatment of multiple objectives satisfied to a greater or lesser extent by the different 
chromosomes of the population? 

Some ways of approaching this last problem [4] will be commented on below 
where a new method is proposed. Lastly, this method will be applied to a specific 
problem. 



1.1 Methods based on the notion of Pareto dominance  

These methods are based on the notion of Pareto dominance. Among them, those 
used by Fonseca and Fleming [5] or by Srinivas and Deb [8] can be mentioned. 

1.2 Methods not based on Pareto dominance 

Other approaches not based on the notion of Pareto dominance have been used by 
other authors [4], such as the weighted sum, lexicographic ordering, or the goal 
programming methods [3] and [6]. 

2 Method of variable priorities for multiobjective evolutionary 
optimization 

The method proposed below is inspired by lexicographic ordering and the goal 
programming methods, and the notion of Pareto dominance. It has been used 
successfully by the authors in earlier works [1] and [2]. 

Given nS ℜ⊂  and mT ℜ⊂ , the function to optimize will be of the form 
TSf →: . Another function TSg →:  will be taken as the evaluation function of 

the evolutionary algorithm, where the m values returned by g are obtained by 
normalization of the m values returned by f. 

2.1 Normalization 

To carry out normalization, a vector will be established with the desired goals for the 
different objectives (in control problems, they will be based on the design 
specifications); let o = {o1, ...., om} ∈  T be this vector. For a chromosome x, the 
normalized values will be: 
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By means of normalization every objective becomes comparable to another. The 
original problem turns into a minimization problem. 

2.2 Ranking 

Population ranking is done in a similar way to the lexicographic ordering method [4], 
i.e., comparing the fitness vectors of the chromosomes bearing in mind the priorities 
of the objectives. The difference is that in the current method, priorities are not fixed, 
and even chromosomes in the same population will have different priorities. 



Let u = g(xu) and v = g(xv) be the fitness vectors returned by the evaluation 
function for two different chromosomes and let )(uγ and )(vγ  be the respective 

permutations of their elements, arranging them in decreasing order. )(uiγ and )(viγ  
will denote their ith elements. 

Consider also the disjointed sets C and D, whose elements will be indexes of the 
different objective functions, created in the following way: 
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Definition 1 (preferability) Vector u is preferable to vector v ( vu f ), if and only if 
φ≠C  and also: 

(D)(C)D minminor          <= φ  (3) 

Definition 2 (equivalence) Vector u is equivalent to vector v if and only if C = D = 
φ . 

The following theorems, whose demonstrations are trivial, fulfill the requirements to 
carry out population ranking, in function of their fitness vectors: 

Theorem 1. If vector u is not preferable to vector v, and both vectors are not 
equivalent, then vector v is preferable to vector u. 

Theorem 2 (transitive property) If vu f  and wv f  then wu f . 

The idea is that the objective farthest from its goal will have the greatest priority in 
each chromosome. Population ranking will be made according to fitness vector 
preferability. 

3 A multiobjective genetic-evolutionary algorithm for selecting 
and tuning controllers 

Evolutionary algorithms have been used successfully to solve multiple problems, 
among them control problems. 

The algorithm presented here is one step further in the process of automation of 
controller design. A genetic algorithm will try to determine the best controller 
structure to use. 

Two loops can be distinguished inside the algorithm. One is external, consisting of 
a genetic algorithm with chromosomes made up of binary numbers and using the 
mutation and crossover operators in an attempt to determine the best control structure. 
The other is internal, consisting of an evolutionary algorithm whose chromosomes 
will be made up of real numbers and using operators adapted to this kind of 
codification (see [7]) that will take charge of evaluating each one of the controller 
structures obtained by the external algorithm. 



3.1 Internal loop 

Figure 1 shows a typical control system diagram. The controller block will do the 
plant to track the input to the system, called a reference signal. Once the structure of 
the controller block has been determined, the tuning process will determine the values 
of a series of parameters for this block.  

 

Fig. 1. Control diagram 

The tuning process was carried out by the authors in [1] and [2] by means of an 
evolutionary algorithm, using in its fitness evaluation function the multiobjective 
optimization method explained in Section 2. This evolutionary algorithm will 
constitute the internal loop of the most general algorithm that is being presented. 

Chromosomes will be coded as real number vectors, with as many elements as 
controller parameters need to be determined. The tournament selection technique and 
usual mutation and crossover operators for real number chromosomes will be used. 
The evolutionary algorithm will have the following steps: 

1. The initial population is chosen randomly. 
2. Chromosomes are decoded and evaluated by means of a computer-experiment 

simulation. The population is sorted according to fitness. 
3. If the end conditions are given, the program concludes.  
4. Tournament selection is used. 
5. A new population is obtained from the selected chromosomes by means of 

mutation and crossover operators. In order to favor diversity and avoid premature 
convergence, a small number of immigrants are added (chromosomes obtained 
randomly). 

6. Return to step 2. 

This process will be repeated for each one of the controller structures determined 
by the external loop. 

3.2 External loop 

The external loop algorithm is built as a new layer or level over the internal loop just 
described. The objective of the external loop algorithm is to determine, by means of 
genetic techniques, the best control structures. 

The controller will be formed by series connection with some of the following 
basic control subblocks: 
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Chromosomes will be made up of as many genes as different basic subblocks and 
each gene will be associated to one of these subblocks. Genes will take binary values, 
so that a 1 will indicate the presence of the corresponding subblock in the controller 
and a 0 will indicate its absence. 

Every structure built from basic subblocks -external loop chromosomes- will be 
passed to the internal loop for evaluation. The internal loop will build the controller 
by decoding the external loop chromosome and will obtain the best values for the 
controller parameters. In the external loop algorithm: 

1. The initial population is randomly obtained. 
2. Chromosomes are evaluated by the internal loop. Population is arranged according 

to fitness. 
3. If the end conditions are given, the program concludes. 
4. Tournament selection is used. 
5. A new population is obtained from the selected chromosomes by applying 

mutation and binary crossover operators. In order to favor diversity and avoid 
premature convergence, a small number of immigrants is added (chromosomes 
obtained randomly). 

6. Return to step 2. 

In short, the external loop will select the controller, while the internal loop will 
tune it. 

4 Application example 

In the CRIBAV project (Robust and Intelligent Control for High-Speed Crafts), the 
aim is to make robust controllers acting on some control surfaces (Flap and T-foil, see 
detail in Figure 2) absorb pitch and heave movements of a high-speed passenger ship. 
Additional information can be found on the Web:  http://ctb.dia.uned.es/cribav/. 

The aim will be to reduce passenger sickness index. In order to achieve this, it will 
be necessary to reduce the vertical accelerations of the ship due to waves. The 
following expression will be used for vertical acceleration, measured 40 meters away 
from the gravity center of the ship: 
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Fig. 2. Control surface detail 

From the previous expression, the mean acceleration will be calculated for an 
experiment (by means of computer simulation). Considering N sampling instants, the 
expression for the mean acceleration will be: 
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This expression will be employed by the evaluation function of the evolutionary 
algorithm to obtain a suitability measurement for a specific controller. 

Different objectives considered in the evaluation function were: 

� Stability of the system Plant + Controller. 
� Saturations in the Flap: 0º ≤  value ≤ 15º. 
� Saturations in the Tfoil: -15º ≤ value ≤ 15º. 
� Mean acceleration: J. 

Because of the high computational cost required, the algorithm was implemented 
in C and parallelized using the specialized library MPI. The algorithm is easily 
parallelizable, bearing in mind that each chromosome of the external loop population 
can be evaluated by a different processor, and the results obtained can then be 
grouped. The program was executed on a Silicon Graphics Origin 2000 computer, 
using 30 processors, one for each  external loop chromosome. 

The program, once it had been designed, was executed for three different speed 
and sea state conditions. The sickness index reduction of the ship without control 
appears in the following table for different speed and sea state conditions:  

 
Speed (Knots) Sea State Sickness index reduction 

20 4 12,7% 
40 4 46,4% 
40 5 13,6% 

The best results were obtained for speed = 40 knots and sea state 4. For these 
conditions, the controller obtained is shown in Figure 3, and the acceleration 
evolution and the MSI (Motion Sickness Incidence) for a range of encounter 
frequencies, with and without control, are shown in Figure 4. 



y11

y21

y12

y22

V=40  kno ts S SN=4

Gc11

Gc21

Gc12

Gc22

2

Ref_T fo i l

1

Re f_Fl ap

7 .5

T rim

Satu ra ti on

T foi l

Sa tu ra ti on

Flap

0

Ref P i tch

0

Ref Heave

Gc22

Gc21

8 .2118e+001s  +4 .8096e+006s  +4 .5367e+011s  +9 .9049e+015s  +1 .1060e+020s+1 .0109e+0235 4 3 2

4 .3786e+009s  +1 .7906e+014s  +2 .6196e+018s  +1 .4536e+022s  +2 .6808e+025s  +7 .6257e+023s+1 .1827e+0236 5 4 3 2

Gc12

Gc11

7 .3937e+004s  +7 .0585e+008s  +9 .3470e+008s+1 .8513e+0093 2

2 .6232e+000s  +2 .0071e+003s  +5 .4481e+005s+9 .5974e+0073 2

6 .6628e-004s  +3 .1551e+001s  +1 .0080e+006s+6.5725e+0083 2

s  +7 .7857e+004s  +2 .4421e+009s  +2 .4438e+013s  +7 .5332e+016s  +5 .6647e+013s+5 .0192e+0136 5 4 3 2

s  +1 .2395e+004s  +3 .6353e+007s  +4 .4525e+009s  +2 .5520e+012s+2 .1570e+0145 4 3 2

s  +1 .3098e+004s  +3 .3756e+007s  +1 .6526e+010s  +2 .6398e+012s+1 .0030e+0145 4 3 2

2

Pi tch

1

Heave

    
Fig. 3.  Controller obtained for V = 40 knots and sea state 4.  
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Fig. 4.  Evolution of the acceleration and MSI for a range of encounter frequencies  
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