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Abstract: In this paper we have investigated the use of genetic algorithm for the selection
of weighting matrices of performance index for the linear quadratic control design. We
can easily consider in the fitness index of the genetic algorithm different design
specifications and their verifications in different operations conditions. As well as a
measure of robustness σ(S+T) evaluated at the input and at the output for linearized
models obtained for different parameters. This technique is applied to design a control for
the longitudinal dynamic of an aircraft. The robustness and specifications are evaluated
for different values of mass, airspeed, centre of gravity, and transport delay.
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1. INTRODUCTION

One of the greatest difficulty to apply new and
classical control methods is the effort to learn, to
implement and to apply the method, and the
problematical that is to re-design with a non-familiar
method. The Linear Quadratic method is considered
to be relatively easy to use, but requires a good
understanding of optimal control theory. Obtaining
the desired results by selection of weighting
functions will probably provide the greatest difficulty
for a new user. Some iterations are necessary
(Anderson and Moore, 1992). So, Frangos and Yavin
(1992) have proposed an iterative procedure for
automating the design of linear optimal control
systems, the method was applied to the design of a
decoupled lateral control systems for an RPV.
Stevens et al. (1992) gave an approach for design
servo compensators of a desirable structure that is
based on LQ output-feedback techniques, with this
approach a few parameters must be tuned during the
interactive design process. Blight et al. (1994) have
several applications of multivariable control theory
for aircraft control law developments, but the
problem is to adjust the penalty.

After those results, we have investigated other
possible design methods, that we can apply to other
techniques, and with less necessary effort to
application and re-design. So we investigated the use
of genetic algorithms to design different controllers.
Genetic algorithms were explored by Krishnakumar
and Goldberg (1992) and Goldberg (1998) as a
technique for solving aerospace-related control
system optimization problems. They used a genetic
algorithm to design a lateral autopilot and a
windshear controller. Genetic algorithms were used
to optimize a standard linear quadratic regulator
problem. In this case, the fitness function for the
genetic algorithm was the performance index of the
LQR, which was selected to maintain heading and
roll attitude. The genetic algorithm was used as an
optimization technique to solve the LQR
optimization problem.

We want to investigate possible techniques to make
us easier to include new design specifications,
without being a new problem with different
performance index. It is only necessary to choose
other weighting matrices, which are selected by a
genetic algorithm. So we have applied genetic



algorithms techniques to selection of weighting
matrices of performance index for the linear
quadratic control design (application which is
showed in this paper). This technique was extended
to the robust selection of the eigenvalues and
eigenvectors for the eigenstructure assignment design
(which was used, without genetic algorithm, with
very good results, de la Cruz et al. 1997, Magni et al.
1997 ch. 18). The results are very promising since
with direct transcriptions and intuitively we can
obtain the weighting matrices for the linear quadratic
control algorithm. In the next sections we explain the
application of genetic algorithm to solve the design
of a linear quadratic optimal control for aircraft
control, how the weighting matrices are selected and
how the design specifications into the algorithms are
considered (Davis, 1991; Trebi-Ollennu and White,
1997).

2. LINEAR QUADRATIC OPTIMAL CONTROL

The fundamentals of linear quadratic optimal control
theory can be found in the special issue on the LQG
problem (see IEEE Trans. on Automatic Control vol.
AC-16), since then, many books have been written
on this subject (Anderson and Moore, 1992; Lewis,
1986; Mosca, 1995). Many applications have been
performed in the aeronautical field, see among others
(Stevens and Lewis, 1992; Magni et al., 1997
chapters 4 and 28), a list of aeronautics applications
can be found in (Delgado et al. 1997).

This control technique allows the designer to take
into account both requirements on the amplitude of
the control inputs and the settling time of the state
variables; moreover, when considering infinite
horizon optimization and provided that the weighting
matrices are suitable chosen, an important feature of
LQ control is that the resulting closed-loop system
exhibits very good guaranteed multivariable stability
margins. When the complete state is not available for
measurement and some or all of the measures are
affected by noise, the Kalman optimal filtering
theory can be used to design an observer of the state
variables; however, the robustness margins are no
longer guaranteed in the presence of an observer. If
sensor noise is absent or one does not care about it, it
is possible to use the degree of freedom on the design
of the observer to recover the LQ robustness
margins; this is the celebrated Loop Transfer
Recovery (LTR) technique (Stein and Athans, 1987),
which, however, can be applied only when the plant
under considerations is minimum phase. Linear
quadratic optimal control performs a trade-off
between control amplitudes and setting times; this
trade-off is strongly influenced by the choice of the
weighting matrices Q and R. Large values of R with
respect to Q will result in weak control amplitudes
and a slow regulation of the state variables;
conversely we have stronger control amplitudes and a

faster regulation. The design cycle is usually
composed of iterative steps (Amato et al., 1997).

3. GENETIC ALGORITHM

Genetic algorithms were originally developed by
John Holland (1975) and have been growing since
then. This field is changing rapidly and different
researches have implemented them in different ways
(Davis, 1991; Goldberg, 1989). Genetic algorithms
were invented to mimic some of the processes
observed in natural evolution. Holland thought that,
appropriately incorporated in a computer algorithm,
they might yield a technique for solving difficult
problems in the way that nature has done through
evolution.

Evolution is a process that operates on chromosomes.
The process of reproduction is the point at which
evolution takes place. Mutations may cause the
chromosomes of children to be different from those
of their parents, and recombination processes may
create quite different chromosomes in the children
combining material from chromosomes of two
parents. Processes of natural selection cause those
chromosomes that encode successful structures to
reproduce more often than those that do not. The first
difficulty is the encoding solutions to the problems
on chromosomes, and the definition of an evaluation
function that returns a measurement of the worth of
any chromosome in the context of the problem. The
technique for encoding the possible solutions may
vary from problem to problem and from genetic
algorithm to genetic algorithm. In some works the
encoding is carried out using bit strings, but other
codification can be used too (Goldberg, 1989). With
regard to our case of linear quadratic control design,
the weighting matrices are usually diagonals. So
chromosomes are comprised for number in floating
point, which are the elements of main diagonals of
weighting matrices.

The evaluation function is the link between the
genetic algorithm and the problem to be solved. An
evaluation function takes a chromosome as input and
returns a number or list of numbers that is a
measured of the performance or fitness of
chromosome on the problem to be solved. The return
values are named fitness index. The evaluation
function plays the same role in genetic algorithm
than the environment plays in natural evolution. The
iteration of an individual with its environment
provides a measure of its fitness, and the iteration of
a chromosome with an evaluation function provides a
measure of fitness that the genetic algorithm uses
when carrying out reproduction.

The procedural flow of our genetic algorithm is
outlined as follows:



1) The initial generation of chromosomes (elements
of main diagonals of weighting matrices) is
randomly chosen.

2) From chromosomes the weighting matrices are
obtained and by an analytical method the
controller gains are calculated.

3) Simulation is conducted and fitness index is
evaluated for each gain set.

4) Create new chromosomes by applying selection,
crossover and mutations.

5) Delete members of the population to make room
for the new chromosomes.

6) Evaluate the new chromosomes: obtain the
weighting matrices, calculate the controller gains
and evaluate the fitness index for each gain set.
Insert the new chromosome into the population

7) If time is up, stop and return the best set gains; if
not go to 4.

The purpose of parent selection is to give more
reproductive chances, on the whole, to the fittest
members of population. There are many ways to do
this. One commonly used technique is the roulette
wheel parent selection (Davis, 1991): a) sum the
fitnesses of all the members of the population (call
the result total fitness), b) generate a random number
n between 0 and total fitness, and c) return the first
member of the population whose fitness, added to the
fitnesses of the preceding members of the population,
is greater than or equal to n. Although this selection
technique is random, each parent’s chance of being
selected is directly proportional to its fitness. On
balance, over a number of generations this algorithm
will drive out the least fit members and contribute to
the spread of the genetic material in the fittest
members of the population. The mutation is a
procedure or operator carried out by reproduction
phase. It is simply an occasional random alteration.
When mutation is applied some chromosomes
elements are randomly replaced. The mutation has an
associated probability parameter that is typically
quite low. The mutation procedure helps in avoiding
the possibility of mistaking a local minimum for a
global minimum. When mutation is sparingly used

with reproduction and crossover, it improves the
global nature of the genetic algorithm search.
Another process that alters chromosomes during
reproduction and may be at least as important as
mutation is the crossover.

Crossover occurs when two parents exchange parts of
their corresponding chromosomes. In a genetic
algorithm, crossover recombines the genetic material
in two parent chromosomes to make two children. A
simple crossover follows reproduction in three steps.
First, the newly reproduced chromosomes are paired
together at random. Second, an integer position n
along every pair of chromosomes is selected
uniformly at random. Finally, based on a probability
of crossover, the paired chromosomes undergo
crossing over at the integer position n along the
chromosome. This result in new pairs of
chromosomes that are created by swapping all of the
characters 1 and n inclusively. Although the
crossover procedure is a randomised event, when
combined with reproduction it becomes an effective
means of exchanging information and combining
portions of good quality solutions. Crossover is a
very important component of a genetic algorithm.
Many genetic algorithm practitioners believe that if
we delete the crossover operators from a genetic
algorithm the result is not a genetic algorithm. In
fact, the use of a crossover operator distinguishes
genetic algorithms from other optimization
techniques. Dynamic programming, for instance,
maintains populations of individuals and applies
mutation-like operations to them, preserving the best
ones.

4. PROBLEM DESCRIPTION

The problem formulation corresponds to the RCAM
design problem (Lambretchs et al., 1997) proposed
for the GARTEUR Action Group FM(AG08). In this
paper, we design a linear quadratic control to verify
the specifications of the longitudinal dynamics for
the RCAM model. The linear longitudinal model
(around the nominal conditions: air speed V=80 m/s,
altitude h=1000m, mass=120.000 K, centre of gravity
cgx=0.23, cgz=0, transport delay δ=0) is:

___________________________________________






























+






















θ























−
−
−−−−

−−−

−−−−

=






















θ

TH

T

TH

T

B

B

TH

T

B

B

d
d

 

6667.00
06667.6
00
00
00
00

X
X
w
u

q

 

6667.000000
06667.60000
04785.66683.02265.07674.03571.77
6200.191836.00743.00325.07758.91927.2
000001

5825.04379.20161.00007.009825.0

X
X
w
u

q

�

�

�

�

�

�






















θ





















−−
−−−−

−
=





















TH

T

B

B

A

V

z

x

X
X
w
u

q

 

000290.09996.000
009996.00283.08667.790
06604.00681.00231.002661.0
20187.00076.00033.000075.0
000001

V
w
n
n
q



where the states are: pitch rate q, pitch angle θ, x
component of inertial velocity in body axis uB, z
component of inertial velocity in body axis wB, the
state corresponding to the first order tailplane model
XT and the state corresponding to the first order
engine model XTH. This last state is the sum of the
individual engine commands. The inputs are the
tailplane deflection δT and the throttle position δTH.
The measurements are: pitch rate q, horizontal load
factor nx, vertical load factor nz, z component of
inertial velocity in the vehicle-carried vertical frame
wV, and air speed VA. The control system is showed in
Figure 1.
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Fig. 1. Flight control system

The design specifications (Lambretchs et al., 1997)
are summarised as follows:

- The control system should be able to track:
- speed commands VAc with a rise time tr<12s,

a settling time ts<45s and overshoot Mp<5%.
- flight path angle command with tr<5s,

ts<20s y Mp<5%. But γ is neither available
as an output nor as a reference signal. To
cope with such a problem we use the

relation V
WVsin −=)(γ , where V is the

total inertial velocity. We are thus lead to
interpret the specifications in terms of
commands in WV.

- Ride quality criteria: under normal conditions,
the vertical acceleration (nz) should be
minimised; it should be less than ± 0.05g. And
during a 30-degree turn less than  ±0.2g.

- Control activity criteria:
- Throttle limits (saturation):

rad5.0rad5.0 180TH180
ππ ≤δ≤

- Rate limits for throttle movement are: rising
slew rate = s/rad6.1 180

π , falling slew rate =

s/rad6.1 180
π−

- Saturation of tailplane deflection:
rad1025 180T180

ππ ≤δ≤−
- Rate limits for tailplane deflection:

s/rad1515 180T180
ππ ≤δ≤− �

5. DESIGN

The control structure is shown in Figure 2.  The
controller has two parts: a static gain acting on the
states measured and a stating gain acting on the
integral of the errors (compensator block in Figure 2)

in the commanded variables wV and VA to eliminate
steady state errors.

+

-
compensator

-Kp

-L

+

+

Plant
References

Fig. 2. Longitudinal autopilot control scheme

The gains are selected to minimize a quadratic
performance index, whose weighting matrices are
chosen by a genetic algorithm to verify the design
specifications (performance, robustness, ride quality
and control activity). The genetic algorithm
(described before) was implemented as MATLAB
functions.

The evaluation of the fitness of new chromosomes is
the key to obtain good results. In our case, the
evaluation function contains the specifications and
criteria of design. The evaluation function returns a
fitness index, which is a quantitative measure of the
fitness of chromosome to the problem solution. We
considered criteria about transient response
characteristic to command signals and cross coupling
constraints for WV and VA (overshot Mp, output
negative evolution, rise time tr, stationary error es),
control saturation and control rate limits

Furthermore, we can applied the evaluation function
to other linear models around different operation
conditions, and penalise chromosomes whose gains
may make the system unstable. Each element in the
evaluation function is normalised, so all elements
have the same weight on the fitness index. Weight
constants are calculated to normalisation. So the
product between each constant and maximum value
of each element is one.

The fitness index is a weight sum of all those
specifications terms. The fitness index may include
values of those specifications terms in other
operation conditions To consider, a measure of
robustness σ(S+T) is evaluated at the input and at the
output for linearized models obtained for different
values of parameters. The sum of σ(S+T) for each
model and condition is included in the fitness index.

The crossover rate is around 40% of the population
and the mutation rate is around 0.8%. These
parameters can be change. As well as the size of the
population and the number of generations to achieve
the optimum. We have studied which is the best size
of the population as well as the best number of
generations for this kind of problem. Figure 3 shows
the optimum fitness versus the size of population,
and Figure 4 shows the optimum fitness versus the
number of generations. We can see that it is enough
with a number of generations around 35 and the size
of the population with around 50 chromosomes. The



weighting matrices Q and R for the better fitness
index are:

} 10*4.210*4.210*7.410*9               

10*8.410*4.210*310*3{diagQ
161795

617210=

}106.6107.3{diagR 2020 ∗∗=

For these weighting matrices, the gains Kp and L
(Figure 2) obtained with the Linear Quadratic
Optimal control are:
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Figures 5 and 6 show the responses when a controller
is used with those gains. The responses satisfy all the
requirements. Figure 5 shows the response to a step
of 13m/s in commanded airspeed VA. The cross
coupling to WV is little, the maximum deviation in
flight path angle is smaller than 0.2deg. There is an
overshoot and the rise time and the settling time are
shorter than specified. The vertical acceleration nz

remains smaller than the specified 0.05g. Figure 6
shows the response to a step in commanded vertical
velocity WV corresponding to –3deg in commanded
flight path angle. The overshoot, the rise time, the
settling time and the cross coupling are verified too.
The vertical acceleration nz surpasses the specified in
normal flight but it is smaller than the one specified
for the manoeuvre. Tables 1 and 2 show the gain and
phase margins obtained from the sensitivity functions
for different models. Very good stability margins are
obtained.

Fig. 3. Optimum fitness versus population size Fig. 5. Response to a step in VA

Fig. 4. Optimum fitness versus number of generations Fig. 6. Response to a step in WV.

Table 1. Stability margins at the inputs

Linear model for Nominal
parameters

Linear model for Minimum
parameters

Linear model for Maximum
parameters

Function Gain margin Phase margin Gain margin Phase margin Gain margin Phase margin
S [-6.0, 38.1] ±59.2 [-6.0, 38.2] ±59.2 [-5.9, 36.4] ±59.0
T [-60.8, 6.0]  ±59.9 [-28.0, 5.8] ±57.4 [-46.9, 6.0] ±59.7
S+T [-38.1, 38.1] ±88.6 [-30.0, 30.0] ±86.37 [-36.4, 36.4] ±88.3



Table 2. Stability margins at the outputs

Linear model for Nominal
parameters

Linear model for Minimum
parameters

Linear model for Maximum
parameters

Function Gain margin Phase margin Gain margin Phase margin Gain margin Phase margin
S [-6.0, 38.0] ±59.2 [-6.0, 38.7]  ±59.2 [-5.9, 36.3]  ±60.0
T [-60.4, 6.0] ±60.0 [-62.8, 6.0]  ±59.9 [-67.0, 6.0]  ±60.0
S+T [-38.1, 38.1] ±88.6 [-30.0, 30.0] ±86.4 [-36.4, 36.4] ±88.3

6. CONCLUSION

Though the linear quadratic method is considered to
be relatively easy to use, requires a good
understanding of optimal control theory, and the
selection of correct weight matrices provide the
greatest difficulty. In this paper we have showed that
by a genetic algorithm we can easily obtain the
correct weight matrices to applied the linear
quadratic algorithm. Furthermore, we can easily
consider in the fitness index of the genetic algorithm
different design specifications and their verifications
in different operations conditions. As well as we
consider a measure of robustness σ(S+T) evaluated at
the input and at the output for linearized models
obtained for different values of parameters. In
summary, with direct transcriptions and intuitively
we can easily obtain the weighting matrices for the
linear quadratic algorithm. This technique was
extended to the robust selection of the eigenvalues
and eigenvectors for the eigenstructure assignment
design. So their selection, that traditionally was made
by iterative and heuristic methods, was made easily.
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