
Parallel Evolutionary Computation: Application
of an EA to Controller Design

M. Parrilla, J. Aranda, and S. Dormido-Canto

Dpto. de Informática y Automática,
E.T.S. de Ingenieŕıa Informática, UNED

{mparrilla, jaranda, sebas}@dia.uned.es

Abstract. The evolutionary algorithms can be considered as a powerful
and interesting technique for solving large kinds of control problems.
However, the great disadvantage of the evolutionary algorithms is the
great computational cost. So, the objective of this work is the parallel
processing of evolutionary algorithms on a general-purpose architecture
(cluster of workstations), programmed with a simple and very well-know
technique such as message passing.

1 Introduction

Efficiency of evolutionary algorithms in the optimization problem solution lead
to consider them as an alternative method to solve control systems problems.
The Evolutionary Algorithms (EA) present a series of advantages with respect to
other methods that are most effective in some situations but present applicability
limitations. Some of this methods are:

– Linear Programming. Only applicable to problems with linear functions.
– Non-linear Optimization Methods Based on the Gradient. Applica-

ble to problems with non-linear functions. The functions must be continuous
and differentiable, at least at the neighborhood of the optimum. The meth-
ods based on the gradient also work with linear problems, but in this case,
the linear programming is preferable.

– Exhaustive Search. Applicable on those cases where there is a limited
number of solutions to problem.

However, the evolutionary algorithms are independent of the function to op-
timize, and can be applied when the number of possible solutions is unlimited.

The application of evolutionary algorithms to control can be classified in
two main groups: first, the off-line applications, the most cases are included
in this group; in these applications the EA can be employed as a search and
optimization engine to select suitable control laws for a plant to satisfy given
performance criteria or to search for optimal parameter setting for a partic-
ular controller structure. And second, the on-line applications, where the EA
may be used as a learning mechanism to identify characteristics of unknown or

J. Mira and J.R. Álvarez (Eds.): IWINAC 2005, LNCS 3562, pp. 153–162, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



154 M. Parrilla, J. Aranda, and S. Dormido-Canto

non-stationary systems or for adaptive controller tuning for known or unknown
plants. The on-line methods present two essential problems: on the one hand,
the high computational cost, making difficult that the parameters are available
when they are needed, and on the other hand, and even a more important thing,
is the fact that the stochastic nature of this kind of algorithms could lead to
that the best solution obtained doesn’t comply with the minimum requirements.
These disadvantages have made to focus almost all works in the off-line methods,
leaving the on-line methods for pure research works.

In certain circumstances, the algorithm execution time comes a very impor-
tant factor. In the case of on-line methods is necessary to have the parameters in
the appropriate moment, a higher power in computation is required. Other case
is when the algorithm become more complex, as in [10], here the controller is
unknown and the algorithm assumes responsibility for determining the number
of zeros and poles in the controller and its tuning.

When computational complexity is increased, the use of multiple processors
to solve the problem, acquire significance. Available options, can be grouped
basically in two categories: to use a supercomputer with multiple processors, or
to use a cluster of PC’s.

The advantages of clusters of PC’s over supercomputers are: a much lower
cost, and a higher capacity to be upgraded. In this work, a cluster of 14 PC’s
was used. Regarding the software, Matlab with the PVMTB functions library
were used.

2 Controllers Design by Evolutionary Algorithms

In the early 1990s, evolutionary algorithms were first investigated as an alterna-
tive method of tuning PID controllers.

Oliveira et al [8] used a standard genetic algorithm to get initial estimates
for the values of PID parameters. They applied their methodology to a variety
of linear time-invariant systems.

Wang and Kwok [14] tailored a genetic algorithm to PID controller tuning.
They stressed the benefit of flexibility with regard to cost function, and alluded to
the concept of Pareto-optimality to simultaneously address multiple objectives.

More recently, Vlachos et al [13] applied a genetic algorithm to the tuning of
decentralized PI controllers for multivariable processes. Controller performance
was defined in terms of time-domain.

Onnen et al [9] applied genetic algorithms to the determination of an optimal
control sequence in model-based predictive control. Particular attention was paid
to non-linear systems with input constraints.

Genetic algorithms have also been successfully applied in the field of H-
infinity control. Chen and Cheng [3] proposed a structure specified H-infinity
controller. The genetic algorithm was used to search for good solutions within
the admissible domain of controller parameters.

They have also been extended to simultaneously address multiple design
objectives, achieved via the incorporation of multiobjective genetic algorithm



Parallel Evolutionary Computation: Application of an EA 155

(MOGA). Multiple design objectives may be defined, in both the time and fre-
quency domain, resulting in a vector objective function. In one such study, Fon-
seca and Fleming [4] applied a MOGA to the optimization of the low-pressure
spool speed governor of a Rolls-Royce Pegasus gas turbine engine.

Research has also been directed toward the so-called intelligent control sys-
tems. The two most popular techniques are fuzzy control and neural control.

Ichikawa and Sawa [5] used a neural network as a direct replacement for a con-
ventional controller. The weights were obtained using a genetic algorithm. Each
individual in the population represented a weight distribution for the network.

Tzes et al [11] applied a genetic algorithm to the off-line tuning of Gaussian
membership functions, developing a fuzzy model that described the friction in a
dc-motor system.

Evolutionary methods have also been applied to the generation of control
rules, in situations where a reasonable set of rules is not immediately apparent.
Matsuura et al [7] used a genetic algorithm to obtain optimal control of sensory
evaluation of the sake mashing process. The genetic algorithm learned rules
for a fuzzy inference mechanism, which subsequently generated the reference
trajectory for a PI controller based on the sensory evaluation. Varsek et al [12]
also used genetic algorithms to develop rule bases, applied to the classic inverted
pendulum control problem.

3 Problem Description

The problem formulation corresponds to the RCAM design problem proposed for
the GARTEUR Action Group FM(AG08), [6]. The non-linear model proposed
was used to generate a linear model around the following conditions: airspeed
VA = 80 m/s, altitude h = 1000 m, mass = 120000 kg, center of gravity cgx =
0.23, cgz = 0.1 and transport delay δ = 0. From the linearized model obtained,
only the longitudinal mode was used, because is trivial to extend the algorithm
to the lateral mode, once designed.

The linearized model, in the state-space representation, is:
⎛
⎝

q̇

θ̇
u̇B
ẇB
ẊT

χ̇T H

⎞
⎠ =

⎛
⎝

−0.9825 0 −0.0007 −0.0161 −2.4379 0.5825
1 0 0 0 0 0

−2.1927 −9.7758 −0.0325 0.0743 0.1836 19.6200
77.3571 −0.7674 −0.2265 −0.6683 −6.4785 0

0 0 0 0 −6.6667 0
0 0 0 0 0 −0.6667

⎞
⎠

⎛
⎝

q
θ

uB
wB
XT

χT H

⎞
⎠ +

⎛
⎝

0 0
0 0
0 0
0 0

6.6667 0
0 0.6667

⎞
⎠(

dT
dT H

)

(
q

nx
nz
wV
VA

)
=

(
1 0 0 0 0 0

0.0075 0 −0.0033 0.0076 0.0187 2
−0.2661 0 −0.0231 −0.0681 −0.6604 0

0 −79.8667 −0.0283 0.9996 0 0
0 0 0.9996 0.0290 0 0

)⎛
⎝

q
θ

uB
wB
XT

χT H

⎞
⎠ (1)

where the states are: pitch rate (q), pitch angle (θ), x component of the inertial
velocity in body-fixed reference frame (uB), z component of the inertial velocity
in body-fixed reference frame (wB), state corresponding to the tailplane (XT )
and state corresponding to the engines throttles (χTH).

The outputs are: pitch rate (q), horizontal load factor (nx), vertical load factor
(nz), z component of vertical velocity in the vehicle-carried reference frame (wV )
and air speed (VA).



156 M. Parrilla, J. Aranda, and S. Dormido-Canto

The objectives considered are in the design specifications, in the document
[6]. For longitudinal mode, the design specifications are summarized as follows:

– Closed-loop stability: it’s the most basic objective to be satisfied.
– The control system should be able to track step reference signals: in VA with

a rise time tr < 12s, a setting time ts < 45s and overshoot Mp < 5%,
and in flight path angle (γ) with tr < 5s, ts < 20s and Mp < 5%. But
γ isn’t available in the model. To cope with such a problem, the relation
sin(γ) = −wV

V can be used, where V is the total inertial velocity.
– Ride quality criteria: vertical accelerations would be minimized.
– Saturations limits in control signals, would be observed.
– Robustness criteria: the gain margin is required to be at least 10 dB and the

phase margin is required to be at least 50.

In a previous work [1], the authors of this document solved the problem
by means of an sequential evolutionary algorithm. They took a fixed controller
structure for this, as showed in figure 1, where a static gain matrix (Kp) was
directly applied on the 5 model outputs, and another gain matrix (Ki) was
applied on the integral of the errors in VA y wV , to eliminate steady state errors.
The algorithm got the gains, Kp y Ki, meeting the design specifications.

Fig. 1. Structure of longitudinal controller

The sequential evolutionary algorithm used, is shown in figure 2. A initial
population of chromosomes is randomly generated, whose members would be
possible solutions to the problem, properly coded. Chromosomes would be eval-
uated and sorted according to fitness. The chromosome with the best fitness
would be established as the problem solution. After that a loop would start,
where new generations of chromosomes would be obtained from previous gener-
ation, by applying evolutionary operators over the parents selected in a previous
step. The new generation would be again evaluated and sorted according to fit-
ness. If the best chromosome in the current population was more suitable than
the previously established as solution to problem, it would replace it. Finally
if end conditions are satisfied, the program would finish, otherwise a new loop
iteration would start.

In a more ambitious project, it’s possible to let the algorithm to find the con-
troller structure, or in a multivariable system, ask the algorithm for the matrix
of transfer functions representing the controller, taking the algorithm charge



Parallel Evolutionary Computation: Application of an EA 157

k ← 0
get random initial population Pk(x)
for each xi in Pk(x)

decode xi

evaluate xi ← get fitness

endfor

sort Pk(x) according to fitness

solution ← best xi in Pk(x)
while not end conditions

k ← k + 1
select parents by tournament selection

get new population Pk+1(x)
for each xi in Pk(x)

decode xi

evaluate xi ← get fitness

endfor

sort Pk(x) according to fitness

if the best xi in Pk(x) is better than solution

solution ← best xi in Pk(x)
endif

endwhile

Fig. 2. Sequential Evolutionary Algorithm

in that case of determining the number of zeros and poles for each transfer
functions. To solve this kind of problems, the algorithm would have to tune a
very high number of controllers, which meant that the time of execution in-
crease dramatically. In that cases, the necessity to speedup the tune process
arise.

If the sequential algorithm in figure 2 is parallelized, and a good speedup is
obtained, the parallelization result could be used as a component of a more com-
plex program: the parallelized algorithm would be called every time a controller
has to be tuned. Now the parallelization of the sequential algorithm is described
and also the speedup obtained are shown.

4 Parallelizing the Algorithm

Matlab is a standard in control, thanks to its specialized toolboxes. However, it
lacked ability to carry out parallel programing. To cover this gap, Baldomero
[2], designed PVMTB (Parallel Virtual Machine ToolBox), a toolbox including
almost all functionalities in PVM, the known parallelization library by message
passing.

Thanks to PVMTB, all the control specialized Matlab functions can be used
to design a parallel evolutionary algorithm. The parallelizing process will be
described below.

Matlab with PVMTB, and a Master/Slave strategy were used.



158 M. Parrilla, J. Aranda, and S. Dormido-Canto

In order to parallelize effectively the sequential algorithm previously de-
scribed, a study to determine the most computing intensive parts was carried
out, resulting that generating new chromosomes from parents and determining
fitness were the most time consuming tasks. Therefore, this were the stages where
parallelization would be focused.

An inherent feature of evolutionary algorithms was also taken into account:
for each generation, all chromosomes will have to be created and evaluated before
continuing with a new generation. If the workload isn’t uniformly distributed
between the different processes, those that firstly finish their work will have

start up PVM: pvm_start_pvmd();

start up slave tasks: pvm_spawn();

k ← 0
get random initial population Pk(x)
for each xi in Pk(x)

decode xi

evaluate xi ← get fitness

endfor

sort Pk(x) according to fitness

solution ← best xi in Pk(x)
while not end conditions

k ← k + 1
select parents by tournament selection

for each slave

send a pair of parents: pvm_send();

endfor

while there is a pair of parents not used

receive 2 evaluated chromosomes from one slave: pvm_recv();

send a pair of parents to this slave: pvm_send();

endwhile

while num chromosomes asked for < size of Pk(x)
receive 2 evaluated chromosomes from one slave: pvm_recv();

ask for 2 inmigrants to this slave: pvm_send();

endwhile

while num chromosomes received < size of Pk(x)
receive 2 evaluated chromosomes from one slave: pvm_recv();

endwhile

sort Pk(x) according to fitness

if the best xi in Pk(x) is better than solution

solution ← best xi in Pk(x)
endif

endwhile

for each slave

send signal to quit

endfor

halt PVM: pvm_halt;

Fig. 3. Master Process Algorithm



Parallel Evolutionary Computation: Application of an EA 159

to wait a lot, because they can’t start with a new generation until the others
processes finish with the current one. That obviously imply a decrease of the
speedup obtained with parallelization.

An added difficulty is the fact that times to get the fitness of different chromo-
somes, can be very different. A chromosome implying a unstable system, would
be quickly evaluated, but those that give rise to a stable system would have to be
studied more slowly, to determine the system features, increasing the evaluation
time. To minimize this problem, the master divided the work in small tasks, and
quickly assign a task to slaves waiting for a work.

The master also had to receive the results from slaves, and to organize them
as they arrived. It wasn’t necessary to parallelize the evaluation of the initial
population, because first chromosomes generally give rise to unstable systems,
and are quickly evaluated. The algorithm corresponding to the master process
is shown in figure 3.

Slave processes for its part, were concerned with generating a pair of offsprings
from the pair of parents passed by the master, evaluating them, and sending the
new chromosomes obtained and its fitness to master. They also generated and
evaluated pairs of immigrants, randomly obtained, when master requested them.
Slaves would generate and evaluate chromosomes until the master send them the
end signal. The algorithm used by slaves is shown in figure 4.

while not signal to quit

get master message: pvm_recv();

if parents provided

generate 2 offsprings

else

generate 2 inmigrants

endif

for each generated chromosome

decode chromosome

evaluate chromosome

endfor

send chromosomes and fitness to master: pvm_send();

endwhile

quit

Fig. 4. Slave Process Algorithm

5 Hardware and Software Description

The cluster used in this work had 14 PC’s with AMD K7 500 MHz processors,
384 MB of RAM memory and a hard drive of 7GB each of them. The nodes
(1 Master + 13 Slaves) were connected by Fast-Ethernet switch. The operating
system was Linux (Red-Hat 6.1).

The algorithm was implemented using a toolbox of parallel processing, de-
veloped in Matlab by Baldomero, J.F., [2]: PVMTB (Parallel Virtual Machine



160 M. Parrilla, J. Aranda, and S. Dormido-Canto

Fig. 5. High level overview of PVM

ToolBox), based on the standard library PVMTB. With PVMTB, Matlab users
can quickly build parallel programs, using a message passing system like PVM.

Figure 5 shows a high level overview diagram of PVMTB. The toolbox makes
PVM and Matlab-API (Application Program Interface) calls to enable messages
between Matlab processes.

6 Performance Results

After 4 executions of the parallel algorithm, to tune the controller in figure 1,
an average of the times of execution and the speedups obtained, was calculated.
Each execution was repeated for each possible number of processors. Results are
shown in figure 6, and its numeric values are grouped in table 1.

Fig. 6. (a) Speedup vs. number of computers. (b) Time of execution vs. number of
computers

7 Conclusions

Features of evolutionary algorithms make them appropriated to deal with prob-
lems, difficult to be solved by other methods. A drawback is its high computa-
tional cost, making them impossible to be applied to solve complex problems, in
some cases. But evolutionary algorithms are easily parallelized by nature, and
clusters of PC’s provide a low-cost alternative to supercomputers.



Parallel Evolutionary Computation: Application of an EA 161

Table 1. Speedup and Time of execution vs. number of computers

Time of execution Standard deviation
Number of computers (seg.) Speedup (speedup)

1 8905.9259 1 0
2 7953.4766 1.1197555 0.0079589
3 4597.6172 1.9388577 0.0611588
4 2991.8349 2.9776865 0.0541746
5 2310.3739 3.8557793 0.0610961
6 1904.5179 4.6804295 0.1380201
7 1566.8359 5.6894018 0.1702718
8 1392.8489 6.3950083 0.0752763
9 1312.2312 6.7910607 0.1919798
10 1194.6286 7.4551005 0.0350726
11 1087.4028 8.1928836 0.1823867
12 1034.5336 8.6091675 0.0984071
13 941.04137 9.4676986 0.2028066
14 890.80885 10.023033 0.5184515

Acknowledgment

Part of this work was supported by MCyT of Spain under contract DPI2003-
09745-C04-01.

References

1. Aranda, J.; De la Cruz, J.M.; Parrilla, M. and Ruipérez, P.: Evolutionary Algo-
rithms for the Design of a Multivariable Control for an Aircraft Flight Control,
AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, CO.
(August 2000)

2. Baldomero, J.F.: PVMTB: Parallel Virtual Machine ToolBox, II Congreso de
Usuarios Matlab’99, Dpto. Informática y Automática. UNED. Madrid. (1999) pp.
523-532

3. Chen, B. S., and Cheng, Y. M.: A Structure-Specified H-Infinity Optimal Con-
trol Design for Practical Applications: A Genetic Approach, IEEE Transactions on
Control Systems Technology, Vol. 6. (November 1998) pp707-718

4. Fonseca, Carlos M., and Fleming, Peter J.: Multiobjective Optimization and Multi-
ple Constraint Handling with Evolutionary Algorithms-Part I: A Unified Formula-
tion and Part II: Application Example, IEEE Transactions on Systems. Man and
Cybernetics. Part A: Systems and Humans. Vol. 28. No. 1. (January 1998) pp26-37
and pp38-47

5. Ichikawa, Y., and Sawa, T.: Neural Network Application for Direct Feedback Con-
trollers, IEEE Transactions on Neural Networks, Vol. 3, No. 2. (March 1992) pp224-
231

6. Lambrechts, P.F. et al.: Robust flight control design challenge problem formulation
and manual: the research civil aircraft model (RCAM). Technical publication TP-
088-3, Group for Aeronautical Research and technology in EURope GARTEUR-
FM(AG-08). (1997)



162 M. Parrilla, J. Aranda, and S. Dormido-Canto

7. Matsuura, K.; Shiba, H.; Hirotsune, M., and Nunokawa, Y.: Optimal control of
sensory evaluation of the sake mashing process, Journal of Process Control, Vol. 6,
No. 5. (1996) pp323-326

8. Oliveira, P.; Sequeira, J., and Sentieiro, J.: Selection of Controller Parameters
using Genetic Algorithms, Engineering Systems with Intelligence. Concepts, Tools,
and Applications, Kluwer Academic Publishers, Dordrecht, Netherlands. (1991)
pp431-438

9. Onnen, C.; Babuska, R.; Kaymak, U.; Sousa, J. M.; Verbruggen, H. B., and Iser-
mann, R.: Genetic Algorithms for optimization in predictive control, Control En-
gineering Practice, Vol. 5, Iss. 10. (1997) pp1363-1372

10. Parrilla, M.; Aranda, J. and Dı́az J.M. Selection and Tuning of Controllers, by
Evolutionary Algorithms: Application to Fast Ferries Control. CAMS2004, IFAC.
(2004)

11. Tzes, A.; Peng, P. Y., and Guthy, J.: Genetic-Based Fuzzy Clustering for DC-Motor
Friction Identification and Compensation, IEEE Transactions on Control Systems
Technology, Vol. 6, No. 4. (July 1998) pp462-472

12. Varsek, A.; Urbancic, T., and Fillipic, B.: Genetic Algorithms in Controller Design
and Tuning, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No.
5. (September/October 1993) pp1330-1339

13. Vlachos, C.; Williams, D., and Gomm, J. B.: Genetic approach to decentralized PI
controller tuning for multivariable processes, IEEE Proceedings - Control Theory
and Applications, Vol. 146, No. 1, (January 1999) pp58-64

14. Wang, P., and Kwok, D. P.: Autotuning of Classical PID Controllers Using an
Advanced Genetic Algorithm, International Conference on Industrial Electronics,
Control, Instrumentation and Automation (IECON 92), Vol. 3. (1992) pp1224-1229


	Introduction
	Controllers Design by Evolutionary Algorithms
	Problem Description
	Parallelizing the Algorithm
	Hardware and Software Description
	Performance Results
	Conclusions

