Design of the Vision System for an Intervention-AUV

RAUVI: Reconfigurable AUV for Intervention VISUAL: Vision for AUVs with Intervention Capabilities

Antoni Burguera, Francesc Bonin, Alberto Ortiz, Gabriel Oliver

Contents

- Context: The role of vision in RAUVI project
- Imaging infrastructure
 - -Options
 - -Functions and structure of the vision server module
 - -The harware
- Visual Odometer

Context : Role of Vision in RAUVI

· visual odometer

altimeter, DVL, ...acoustic sensors

- capture of images with position labelling

• standard navigation sensors: IMU,

in a sensor fusion framework (UW SLAM ?)

1.1 Launching 1.2 Survey

1.3 Recovery

· Identification of needs irrespective of schedule – scope of VISUAL in red

- 2.1 Characterization of Intervention
 - image database management (coarse mosaic)
 - view characterization
 - object characterization
- 2.2 Launching
- 2.3 Navigation to the Region of Intervention
 - view identification
 - object identification
- 2.4 Intervention
 - station keeping
- 2.5 Recovery

Automar 2010, Cartagena

.

Context: Tasks to implement in VISUAL

- Study of imaging infrastructure options
- Capture of images with position labelling:
 - visual odometer
 - · acoustic positioning
 - framework for sensors fusion / visual SLAM
- Image database / coarse mosaic generation
- View characterization and identification
- Object characterization and identification

- Imaging infrastructure
 - Improve subsea image quality at a reasonable cost
 - Overcome interference of the media: attenuation and scattering

Image distortion

Marine snow effect reduction

Light attenuation (non uniform)

Imaging infrastructure

• Possible solutions (Yoav Y. Schechner, Technion Israel Inst. of Technology)

Composition of multiple images aquired with different polarized angles

Experimental setup

Imaging infrastructure

- Drawbacks
 - Energy wasted (double filtering)
 - Not necessary in many scenarios (clear water
 - Computing time consuming
 - Marine snow can be reduced by adequate focus placement
 - Ultra-white (>6400ºK) LED based systems increase light penetration and operational area
 - Requires accurate calibration and stable conditions
- Conclusion
 - Not adequate for this Project

- FUGU a flexible vision module
 - Watertight case and waterproof connectors (21cm ⊗ x 23cm W)
 - 4 Thrusters
 - Controller board, Spotlight, Batteries
 - Two bumblebee2 stereo systems
 - · Robust enclosure factory calibrated stereo system
 - 3.8mm focal length (66º HFOV)
 - Image resolution 1024x768 pixels
 - Frame rate 20 FPS
 - <1cm depth accuracy for 1-2m scene depth
 - Firewire interface
 - PCM-3362
 - Chipset Intel Atom N450 @ 1.66 GHz
 - 2 GB SDRAM
 - PC/104 + form factor
 - Nano IMU, pressure sensor, flood detector
 - Firewire extension board, Wi-fi, Ethernet switch
- Structure delivered in October 2010

Imaging infrastructure

- FUGU: Auxiliary mini vehicle to speed up the vision system development
 - Hardware replica of the I-AUV vision system
 - Fugu-Compact: Robust
 - Fugu-Flex: Reconfigurable

• Vision as a collection of services that can be requested via a TCP/IP protocol:

Automar 2010, Cartagena

- Image processing modules under developmentVisual motion estimation (odometer)
 - Object characterization
 - Object identification
 - Station keeping
 - View characterization
 - View identification

Feature detection, description and matching

Main edges orientation histogram

Topological map representation of the surveyed area: Views characterized by its saliency index are the nodes of the map

Automar 2010, Cartagena

13

Visual Odometer

Odometry as a testbed

Visual Odometer

- Preliminary approach:
 - flat seabed
 - vehicle height (z_v) is known
 - camera pitch angle (Φ) is known
 - calibrated camera

closed form solution that determines $(\Delta x_v, \Delta y_v, \Delta \Psi)$ within a least-squares framework

3DOF: 2D motion + rotation

Automar 2010, Cartagena

17

Visual Odometer

- Two variants:
 - generic odometer → constrained problem
 - small yaw rotation → unconstrained problem
- FAST & SURF features

- feature detection + matching + motion estimation:
 - > 10 Hz Intel Celeron 600 MHz, 320 x 240 pixel monochrome images

Visual Odometer

Off-line experiments

- pre-recorded image sequences
- no information available about camera

Automar 2010, Cartagena

19

Visual Odometer

- On-line experiments (under laboratory conditions, camera calibrated):
 - canvas with a seabed mosaic containing a pipe and a telecomm cable

Automar 2010, Cartagena

Vision System for an I-AUV

Present and Future work

- Assess odometers performance against ground truth in larger environments
- Check different features performance (SIFT, SURF, FAST)
- 6DOF positioning with stereo vision information
- Fusion odometer with sonar-based positioning algorithms
- 3D Mosaicking

Automar 2010, Cartagena

21